精英家教网 > 高中数学 > 题目详情
关于x的不等式(m-2)x2-mx-1≥0的解集为{x|x1≤x≤x2},且1≤|x1-x2|≤3,求实数m的取值范围.
考点:一元二次不等式的解法
专题:方程思想
分析:(m-2)x2-mx-1≥0的解为x1≤x≤x2,所以m-2<0,m<2
1≤|x1-x2|≤3,所以1≤(x1+x2)^2-4x1x2≤9,代入再求出m
解答: 解:关于x的不等式(m-2)x2-mx-1≥0的解集为{x|x1≤x≤x2},所以方程(m-2)x2-mx-1=0的根为x1,x2. x1+x2=
m
m-2
x1×x2=-
1
m-2

∵1≤|x1-x2|≤3,∴1≤(x1+x22-4x1x2
m24m-8
(m-2)2
≤9
,且(m-2)<0,∴
3
2
≤m≤
5-
3
2

故答案为:
3
2
≤m≤
5-
3
2
点评:考察了二次函数和二次不等式,二次方程的转换关系,用韦达定理解决
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2013年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类:第一类的用电区间在(0,170],第二类在(170,260],第三类在(260,+∞)(单位:千瓦时).某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.
(1)求该小区居民用电量的平均数;
(2)利用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量
x
=(2sinB,
3
),
y
=(2cos2B-1,cosB),且向量
x
y
共线.
(1)求角B的大小;
(Ⅱ)如果b=1,求△ABC的面积S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C所对的边分别为a,b,c,tanA+tanB+
3
tanAtanB=
3
,c=3.
(Ⅰ)求C;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax,把函数f(x)的图象向左平移1个单位,得到函数y=g(x)的图象.
(1)若g(x)为偶函数,求实数a的值;
(2)若2f(x)-g(x)+2(x-a)>0对于x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-
4
3
.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校举行投篮比赛,比赛规则如下:每次投篮投中一次得2分,未中扣1分,每位同学原始积分均为0分,当累积得分少于或等于-2分则停止投篮,否则继续,每位同学最多投篮5次.且规定总共投中5、4、3次的同学分别为一、二、三等奖,奖金分别为30元、20元、10元.某班甲、乙、丙同学相约参加此活动,他们每次投篮命中的概率均为
1
2
,且互不影响.
(1)求甲同学能获奖的概率;
(2)记甲、乙、丙三位同学获得奖金总数为X,求X的期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,顶点A的坐标为(1,4),∠ABC的平分线所在直线方程为x-2y=0,∠ACB的平分线所在直线方程为x+y-1=0,求BC边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)若f(x)+g(x)≥0,对x∈[1,4)恒成立,求实数k的取值范围;
(2)设函数q(x)=
g(x),x≥0
f(x),x<0
是否存在实数k,对任意给定的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案