精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-
4
3
.求函数f(x)的解析式.
考点:函数解析式的求解及常用方法
专题:导数的概念及应用,导数的综合应用
分析:根据题中函数f(x)=ax3-bx+4的形式,有两个重要信息:①函数解析式中变量的次数为3,②函数有极值,因此采用求导数的方法来求解
解答: 解:∵函数f(x)=ax3-bx+4
∴f′(x)=3ax2-b
∵函数f(x)在x=2处有极值
∴f′(2)=0  f(2)=-
4
3


12a-b=0
8a-2b+4=-
4
3

解得
a=
1
3
b=4

故所求的函数解析式为f(x)=
1
3
x3-4x+4.
点评:本题重点考查函数的导数,以及在极点处的导数为0,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0).称圆心在原点O,半径为
a2+b2
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
2
,0),其短轴上的一个端点到点F的距离为
3

(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1<x<
3
2
},B={x|x<a或x>a+1},A?B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数满足f(x+1)-f(x)=2x,且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式(m-2)x2-mx-1≥0的解集为{x|x1≤x≤x2},且1≤|x1-x2|≤3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=x(2-x).
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象(不需列表);
(3)讨论方程f(x)-k=0的根的情况.(只需写出结果,不要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B(2,3),C(3,2),D(x,y)
(1)若
DA
+
DB
+
DC
=
0
,求|
OD
|;
(2)设
OD
=m
AB
+n
AC
(m,n∈R),用x,y表示m-n.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:
(1)f(x)+f(y)+1≥f(x+y)≥f(x)+f(y);
(2)f(0)≥f(x),x∈[0,1);
(3)-f(-1)=f(1)=1
(Ⅰ)求f(0);
(Ⅱ)当x∈[0,1)时,求证:f(x)=0
(Ⅲ)若集合M={(x,y)|f(x)f(y)=7},求集合M在平面直角坐标系中对应的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
mx
x2+n
(m,n∈R)在x=1处取到极值2.
(1)求f(x)的解析式;
(2)设函数g(x)=lnx+
a
x
,若对任意的x1∈[-1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+
7
2
,求实数a的取值范围.

查看答案和解析>>

同步练习册答案