【题目】已知数列{an},{bn}满足a1=1,an+1=2an+1,b1=4,bn﹣bn﹣1=an+1(n≥2).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式.
【答案】
(1)
证明:由an+1=2an+1得an+1+1=2(an+1),
又an+1≠0,∴
,即{an+1}为等比数列.
(2)
解:由(1)知an+1=(a1+1)qn﹣1=22n﹣1=2n,
∴
,
,
将以上n﹣1个式子累加可得
,又b1=4,
故
.
【解析】(1)由an+1=2an+1得an+1+1=2(an+1),即可证明.(2)由(1)知an+1=2n , 可得:
,利用“累加求和”方法与等比数列的求和公式即可得出.
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:
,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】设直线
与抛物线
相交于不同两点
、
,与圆
相切于点
,且
为线段
中点.
(1) 若
是正三角形(
是坐标原点),求此三角形的边长;
(2) 若
,求直线
的方程;
(3) 试对
进行讨论,请你写出符合条件的直线
的条数(直接写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的定义域均为
,且
是奇函数,
是偶函数,
,其中
为自然对数的底数.
(1)求
的解析式,并证明:当
时,
;
(2)若关于
的不等式
在
上恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足:f(x)=
,且f(x+2)=f(x),g(x)=
,则方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为( )
A.﹣5
B.﹣6
C.﹣7
D.﹣8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最高点为M(
,3).
(1)求f(x)的解析式;
(2)先把函数y=f(x)的图象向左平移
个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,试写出函数y=g(x)的解析式.
(3)在(2)的条件下,若总存在x0∈[﹣
,
],使得不等式g(x0)+2≤log3m成立,求实数m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=4cos2x﹣4
sinxcosx的最小正周期为π(>0).
(1)求的值;
(2)若f(x)的定义域为[﹣
,
],求f(x)的最大值与最小值及相应的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com