【题目】已知函数的最大值为, 的图象关于轴对称.
(Ⅰ)求实数的值;
(Ⅱ)设,是否存在区间,使得函数在区间上的值域为?若存在,求实数的取值范围;若不存在,请说明理由.
【答案】(1) , ;(2) 不存在区间使得函数在区间上的值域是.
【解析】试题分析:(Ⅰ) 由题意得,可得在上单调递增,在上单调递减,可得的最大值为,可得。由的图象关于轴对称,可得。 (Ⅱ)由题知,则,从而可得在上递增。假设存在区间,使得函数在上的值域是,则,将问题转化为关于的方程在区间上是否存在两个不相等实根的问题,即在区间上是否存在两个不相等实根,令, ,可得在区间上单调递增,不存在两个不等实根。
试题解析:
(Ⅰ) 由题意得,
令,得,
当时, , 单调递增;
当时, , 单调递减,
∴当有极大值,也是最大值,且为,
∴,
解得.
又的图象关于轴对称.
∴函数为偶函数,
∴,
∴.
(Ⅱ)由(Ⅰ)知, ,
则,
∴,
令,
则,
∴, 在上递增.
假设存在区间,使得函数在上的值域是,
则,
问题转化为关于的方程在区间上是否存在两个不相等实根,
即方程在区间上是否存在两个不相等实根,
令, ,
则,
设,
则, ,
故在上递增,
故,
所以,
故在区间上单调递增,
故方程在区间上不存在两个不相等实根,
综上,不存在区间使得函数在区间上的值域是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为﹣3,求a,b的值;
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.
(1)求证:平面AA1C⊥平面BA1C;
(2)若AC=BC,求几何体A1﹣ABC的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,互相垂直的两条公路AP、AQ旁有一矩形花园ABCD,现欲将其扩建成一个更大的三角形花园AMN,要求点M在射线AP上,点N在射线AQ上,且直线MN过点C,其中AB=36米,AD=20米.记三角形花园AMN的面积为S. (Ⅰ)问:DN取何值时,S取得最小值,并求出最小值;
(Ⅱ)若S不超过1764平方米,求DN长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数,关于的不等式的解集有且只有一个元素.
(1)设数列的前项和,求数列的通项公式;
(2)记,则数列中是否存在不同的三项成等比数列?若存在,求出这三项,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在上的奇函数.
(1)当时, ,若当时, 恒成立,求的最小值;
(2)若的图像关于对称,且时, ,求当时, 的解析式;
(3)当时, .若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com