精英家教网 > 高中数学 > 题目详情
7.如图,点A(2,0),直线l垂直y轴,垂足为点B,线段AB的垂直平分线与l相交于点C,
(Ⅰ)求点C的轨迹方程;
(Ⅱ)若P为点C的轨迹上的一动点,Q为抛物线x2=y-4上的一动点,O为坐标原点,求△OPQ面积的最小值.

分析 (Ⅰ)利用直接法,即可求点C的轨迹方程;
(Ⅱ)求出直线OQ:(t2+4)x-ty=0,P到直线OQ的距离,表示面积,即可得出结论.

解答 解:(Ⅰ)设C(x,y),则|BC|=|x|,
由题意,|AC|=|BC|,∴$\sqrt{(x-2)^{2}+{y}^{2}}$=|x|,
化简得点C的轨迹方程为y2=4(x-1);
(Ⅱ)设P(s2+1,2s),Q(t2,t+4),则直线OQ:(t2+4)x-ty=0,
P到直线OQ的距离h=$\frac{|({t}^{2}+4)({s}^{2}+1)-2ts|}{\sqrt{({t}^{2}+4)^{2}+{t}^{2}}}$,
∴S△OPQ=$\frac{1}{2}|OQ|h$=$\frac{1}{2}$|(t2+4)(s2+1)-2ts|=$\frac{1}{2}$|s2t+23s2+(s-t)2+4|≥2,
当且仅当s=t=0时,取等号,∴△OPQ面积的最小值为2.

点评 本题考查轨迹方程,考查三角形面积的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.一个口袋内装有大小相同的6个球,其中3个白球,3个黑球,从中一次摸出两个球,则摸出的两个球至少一个是白球的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=x+\frac{1}{e^x}$,若对任意x∈R,f(x)>ax恒成立,则实数a的取值范围是(  )
A.(-∞,1-e)B.(1-e,1]C.[1,e-1)D.(e-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2lnax(a>0).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)当a=e时,证明:t>0时,存在唯一的s,使ts2+t2=f(s).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设复数z=1+i,则复数z+$\frac{1}{z}$的虚部是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某单位共有10名员工,他们某年的收入如表:
员工编号12345678910
年薪(万元)44.5656.57.588.5951
(1)求该单位员工当年年薪的平均值和中位数;
(2)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;
(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\widehaty=\widehatbx+\widehata$中系数计算公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{7}{5}=1.4$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x,\overline y$为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在${({3\sqrt{x}+\frac{1}{x}})^n}$的展开式中,各项系数的和为p,其二项式系数之和为q,若64是p与q的等比中项,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)猜想Sn的表达式,并用数学归纳法证明;
(2)设bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=1-lnx-$\frac{1}{8}$x2
(Ⅰ)求曲线f(x)在x=1处的切线方程;
(Ⅱ)求曲线f(x)的切线的斜率及倾斜角α的取值范围.

查看答案和解析>>

同步练习册答案