精英家教网 > 高中数学 > 题目详情
17.“α≠2kπ+$\frac{π}{2}$(k∈Z)”是“tanα=$\frac{sinα}{cosα}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:若tanα=$\frac{sinα}{cosα}$,则α≠kπ+$\frac{π}{2}$,
则“α≠2kπ+$\frac{π}{2}$(k∈Z)”是“tanα=$\frac{sinα}{cosα}$”的充分不必要条件,
故选:A

点评 本题主要考查充分条件和必要条件的判断,根据正切函数的定义域是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则(  )
A.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=1B.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2C.$\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=1D.$\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a、b>0)的左、右焦点分别为F1、F2,过F2作一条直线与两条渐近线分别交于P、Q两点,线段QF2的垂直平分线恰好为双曲线C的一条渐近线,则双曲线C的离心率为(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{6}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{2x-m}{{x}^{2}+1}$定义在实数集R上的函数,把方程f(x)=$\frac{1}{x}$称为函数f(x)的特征方程,特征方程的两个实根α、β(α<β)称为f(x)的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)把函数y=f(x),x∈[α,β]的最大值记作maxf(x)、最小值记作minf(x),令g(m)=maxf(x)-minf(x),若g(m)≤λ$\sqrt{{m}^{2}+1}$恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A={x|x2-5x+6<0},B={x|x2-4ax+a2≤0}(a>0),且A⊆B,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足:p=3-$\frac{2}{x+1}$(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),产品的销售价格定为(4+$\frac{20}{p}$)元/件,假定厂家的生产能力完全能满足市场的销售需求.
(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;
(Ⅱ)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\left\{\begin{array}{l}{|lgx|,}&{0<x≤\frac{1}{10}}\\{-2(x-1)(x-3)-4,}&{x>\frac{1}{10}}\end{array}\right.$的值域是R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用秦九韶算法计算多项式f(x)=x5+4x4+3x3+2x2+1,当x=5的值时,乘法运算与加法运算的次数和为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=|x+1|的单调增区间是(  )
A.(-∞,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

同步练习册答案