10£®ÏÖÓмס¢ÒÒ¡¢±ûÈýÈ˲μÓijµçÊÓµÄÒ»µµÓ¦Æ¸½ÚÄ¿£¬Èô¼×ӦƸ³É¹¦µÄ¸ÅÂÊΪ$\frac{1}{2}$£¬ÒÒ¡¢±ûӦƸ³É¹¦µÄ¸ÅÂʾùΪ$\frac{t}{2}$£¨0£¼t£¼2£©£¬ÇÒÈýÈËÊÇ·ñӦƸ³É¹¦ÊÇÏ໥¶ÀÁ¢µÄ£®
£¨1£©ÈôÒÒ¡¢±ûÓÐÇÒÖ»ÓÐÒ»ÈËӦƸ³É¹¦µÄ¸ÅÂʵÈÓÚ¼×ӦƸ³É¹¦µÄ¸ÅÂÊ£¬ÇótµÄÖµ£»
£¨2£©ÈôÈýÈËÖÐÇ¡ÓÐÁ½ÈËӦƸ³É¹¦µÄ¸ÅÂÊΪ$\frac{7}{32}$£¬ÇótµÄÖµ£»
£¨3£©¼ÇӦƸ³É¹¦µÄÈËÊýΪ¦Î£¬Èôµ±ÇÒ½öµ±¦Î=2ʱ£¬¶ÔÓ¦µÄ¸ÅÂÊ×î´ó£¬ÇóE£¨¦Î£©µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃ2¡Á$\frac{t}{2}$£¨1-$\frac{t}{2}$£©=$\frac{1}{2}$£¬ÓÉ´ËÄÜÇó³ötµÄÖµ£®
£¨2£©ÓÉÒÑÖªµÃÈýÈËÖÐÇ¡ÓÐÁ½ÈËӦƸ³É¹¦µÄ¸ÅÂÊp=$\frac{1}{2}¡Á\frac{t}{2}¡Á£¨1-\frac{t}{2}£©$+$\frac{1}{2}¡Á£¨1-\frac{t}{2}£©¡Á\frac{t}{2}$+£¨1-$\frac{1}{2}$£©¡Á$\frac{t}{2}¡Á\frac{t}{2}$=$\frac{7}{32}$£¬ÓÉ´ËÀûÓÃÏ໥¶ÀÁ¢Ê¼þ³Ë·¨¹«Ê½ÄÜÇó³ö½á¹û£®
£¨3£©ÓÉÌâÒâÖª¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öE£¨¦Î£©µÄȡֵ·¶Î§

½â´ð ½â£º£¨1£©¡ß¼×ӦƸ³É¹¦µÄ¸ÅÂÊΪ$\frac{1}{2}$£¬ÒÒ¡¢±ûӦƸ³É¹¦µÄ¸ÅÂʾùΪ$\frac{t}{2}$£¨0£¼t£¼2£©£¬
ÇÒÈýÈËÊÇ·ñӦƸ³É¹¦ÊÇÏ໥¶ÀÁ¢µÄ£®
ÒÒ¡¢±ûÓÐÇÒÖ»ÓÐÒ»ÈËӦƸ³É¹¦µÄ¸ÅÂʵÈÓÚ¼×ӦƸ³É¹¦µÄ¸ÅÂÊ£¬
¡àÓÉÌâÒâµÃ2¡Á$\frac{t}{2}$£¨1-$\frac{t}{2}$£©=$\frac{1}{2}$£¬
½âµÃt=1£®
£¨2£©ÓÉÒÑÖªµÃÈýÈËÖÐÇ¡ÓÐÁ½ÈËӦƸ³É¹¦µÄ¸ÅÂÊ£º
p=$\frac{1}{2}¡Á\frac{t}{2}¡Á£¨1-\frac{t}{2}£©$+$\frac{1}{2}¡Á£¨1-\frac{t}{2}£©¡Á\frac{t}{2}$+£¨1-$\frac{1}{2}$£©¡Á$\frac{t}{2}¡Á\frac{t}{2}$=$\frac{7}{32}$
¡à$\frac{4t-{t}^{2}}{8}=\frac{7}{32}$£¬½âµÃ$t=\frac{1}{2}$»òt=$\frac{7}{2}$£¬
¡ß0£¼t£¼2£¬¡àt=$\frac{1}{2}$£®
£¨3£©ÓÉÌâÒâÖª¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=£¨1-$\frac{1}{2}$£©£¨1-$\frac{t}{2}$£©£¨1-$\frac{t}{2}$£©=$\frac{£¨1-t£©^{2}}{8}$£¬
P£¨¦Î=1£©=$\frac{1}{2}£¨1-\frac{t}{2}£©£¨1-\frac{t}{2}£©$+$£¨1-\frac{1}{2}£©¡Á\frac{t}{2}¡Á£¨1-\frac{t}{2}£©$+£¨1-$\frac{1}{2}$£©£¨1-$\frac{t}{2}$£©¡Á$\frac{t}{2}$=$\frac{4-{t}^{2}}{8}$£¬
P£¨¦Î=2£©=$\frac{1}{2}¡Á\frac{t}{2}¡Á£¨1-\frac{t}{2}£©$+$\frac{1}{2}¡Á£¨1-\frac{t}{2}£©¡Á\frac{t}{2}$+£¨1-$\frac{1}{2}$£©¡Á$\frac{t}{2}¡Á\frac{t}{2}$=$\frac{4t-{t}^{2}}{8}$£¬
P£¨¦Î=3£©=$\frac{1}{2}¡Á\frac{t}{2}¡Á\frac{t}{2}=\frac{{t}^{2}}{8}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 2 3
 P $\frac{£¨2-t£©^{2}}{8}$ $\frac{4-{t}^{2}}{8}$ $\frac{4t-{t}^{2}}{8}$ $\frac{{t}^{2}}{8}$
E£¨¦Î£©=$0¡Á\frac{£¨2-t£©^{2}}{8}$+1¡Á$\frac{4-{t}^{2}}{8}$+2¡Á$\frac{4t-{t}^{2}}{8}$+3¡Á$\frac{{t}^{2}}{8}$=t+$\frac{1}{2}$£¬
ÓÉÌâÒâÖªP£¨¦Î=2£©-P£¨¦Î=1£©=$\frac{t-1}{2}$£¾0£¬
P£¨¦Î=2£©-P£¨¦Î=0£©=$\frac{-{t}^{2}+4t-2}{4}$£¾0£¬
P£¨¦Î=2£©-P£¨¦Î=3£©=$\frac{2t-{t}^{2}}{4}$£¬
ÓÖ0£¼t£¼2£¬¡à1£¼t£¼2£¬
¡à$\frac{3}{2}$£¼E£¨¦Î£©£¼$\frac{5}{2}$£®

µãÆÀ ±¾Ì⿼²éÏ໥¶ÀÁ¢Ê¼þ¸ÅÂÊ¡¢ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÓÉy=x3£¬y2=xΧ³ÉµÄÆ½ÃæÍ¼ÐÎÈÆxÖáÐýתһÖÜËùµÃµ½µÄÐýתÌåµÄÌå»ýΪ$\frac{5¦Ð}{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªsin£¨$\frac{¦Ð}{5}$-¦È£©=$\frac{\sqrt{6}}{3}$£¬ÄÇôsin£¨$\frac{11¦Ð}{10}$+2¦È£©=£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®-$\frac{\sqrt{6}}{3}$C£®$\frac{2\sqrt{2}}{3}$D£®-$\frac{\sqrt{3}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an+1=an+4£¬Ôòa100µÄֵΪ397£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªm¡ÊR£¬ÎªÐéÊýµ¥Î»£¬Ôò¡°m=1¡±ÊÇ¡°¸´Êýz=m2-1+miΪ´¿ÐéÊý¡±µÄ£¨¡¡¡¡£©
A£®³ä·Öµ«²»±ØÒªÌõ¼þB£®±ØÒªµ«²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèSnΪ¸÷Ïî²»ÏàµÈµÄµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÒÑÖªa3a5=3a7£¬S3=9£®
£¨1£©ÇóÊýÁÐ{an}ͨÏʽ£»
£¨2£©ÉèTnΪÊýÁÐ{${\frac{1}{{{a_n}{a_{n+1}}}}}\right.$}µÄǰnÏîºÍ£¬Çó$\frac{T_n}{{{a_{n+1}}}}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä³Å©×¯×¥¼¦±ÈÈü£¬ÁýÖÐÓÐ16Ö»¹«¼¦ºÍ8ֻĸ¼¦£¬Ã¿Ö»¼¦±»×¥µ½µÄ»ú»áÏàµÈ£¬×¥µ½¼¦È»ºó·Å»Ø£¬ÈôÀÛ¼Æ3´Î×¥µ½Ä¸¼¦ÔòÍ£Ö¹£¬·ñÔò¼ÌÐø×¥¼¦Ö±µ½µÚ5´Îºó½áÊø£®
£¨¢ñ£©Çó×¥¼¦3´Î¾ÍÍ£Ö¹µÄʼþ·¢ÉúµÄ¸ÅÂÊ£»
£¨¢ò£©¼Ç×¥µ½Ä¸¼¦µÄ´ÎÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°Æä¾ùÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬C³ÉµÈ²îÊýÁУ¬¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ3ac+b2=25£¬Ôò±ßbµÄ×îСֵΪ$\frac{5}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa-c=asinC£¬Ôòsin$\frac{A-C}{2}$+sin$\frac{B}{2}$µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸