精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的最大值和最小值.

(Ⅰ);
(Ⅱ)在区间上的最大值为,最小值为0.

解析试题分析:(Ⅰ)


 
∴函数的最小正周期.
(Ⅱ)∵
 

在区间上的最大值为,最小值为0.
考点:三角函数的周期性最值及其求法.
点评:本题考查三角函数的化简,二倍角公式与两角和的正弦函数的应用,考查三角函数的周期性及其求法,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,且以为最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)求函数的单调递增区间;
(3)求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知为坐标原点,向量是直线上一点,且
(1)设函数,讨论的单调性,并求其值域;
(2)若点共线,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的最小正周期为,最小值为,图象过点,(1)求的解析式;(2)求满足的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知向量,函数.
(1)求函数的单调递增区间;
(2)在中,分别是角的对边,,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数一个周期的图像如图所示。

(1)求函数的表达式;
(2)若,且的一个内角,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知向量,,设函数.
(Ⅰ)若函数 的零点组成公差为的等差数列,求函数的单调递增区间;
(Ⅱ)若函数的图象的一条对称轴是,(),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期;(7分)
(2)设函数对任意,有,且当时, ,求函数上的解析式.(7分)

查看答案和解析>>

同步练习册答案