【题目】一名战士在一次射击中,命中环数大于8,大于5,小于4,小于6这四个事件中,互斥事件有( )
A.2对B.4对C.6对D.3对
科目:高中数学 来源: 题型:
【题目】某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是
,样本数据分组为
,
,
,
,
.
![]()
(1)求直方图中
的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有6名上学路上时间小于
分钟的新生,其中2人上学路上时间小于
分钟. 从这6人中任选2人,设这2人中上学路上时间小于
分钟人数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
是正三角形,且与底面
垂直,底面
是边长为2的菱形,
是
的中点,过
三点的平面交
于
,
为
的中点,求证:
![]()
(1)
平面
;
(2)
平面
;
(3)平面
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市有一块半径为40
的半圆形(以
为圆心,
为直径)绿化区域,现计划对其进行改建,在
的延长线上取点
,使
,在半圆上选定一点
,改建后的绿化区域由扇形区域
和三角形区域
组成,其面积为
,设
.
![]()
(1)写出
关于
的函数关系式
,并指出
的取值范围;
(2)试问
多大时,改建后的绿化区域面积
最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
是公差为正数的等差数列,其前
项和为
,且
,
.
(1)求数列
的通项公式;
(2)数列
满足
,
.
①求数列
的通项公式;
②是否存在正整数
,使得
成等差数列?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
![]()
![]()
(1)求频率分布直方图中
的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为数列
的前
项和,对任意的
,都有
(
为正常数).
(1)求证:数列
是等比数列;
(2)数列
满足
,
,求数列
的通项公式;
(3)在满足(2)的条件下,求数列
的前
项和
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com