精英家教网 > 高中数学 > 题目详情
已知
a
是非零向量,
b
c
,则“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”成立的(  )
A、充分非必要条件
B、必要非充分条件
C、非充分非必要条件
D、充要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据“
a
b
=
a
c
”成立,得到
a
•(
b
-
c
)=0,结合
a
是非零向量,
b
c
,推出
a
⊥(
b
-
c
)
,根据充要条件的判定方法可得结论.
解答: 解:∵
a
b
=
a
c

a
•(
b
-
c
)=0,
a
是非零向量,
b
c

a
⊥(
b
-
c
)

故选:D.
点评:题主要考查了数量积判断两个平面向量的垂直关系,以及必要条件、充分条件与充要条件的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+2ny-1=0(mn>0)上,则
1
m
+
1
n
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数a,b,c满足
9
a
+
4
b
+
1
c
36
a+b+c
,则
b
a+b+c
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义d(A,B)=|x1-x2|+|y1-y2|为两点A(x1,x2),B(y1,y2)的“直角距离”,已知直线l经过点P(
5
,0),倾斜角为α,且cosα=-
5
5
,在直线l上截取线段EF(-
5
≤x≤2
5
),则原点O与线段EF上一点的“直角距离”的最小值与最大值之和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)-
2
3
+(1.5)-2
+(
2
×
43
)4

(2)lg25+lg2×lg500-
1
2
lg
1
25
-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,点M、N分别在线段AB1、BC1上,且AM=BN.给出下列结论:
①MN与A1C1相交;
②MN∥A1C1
③MN与A1C1异面,
其中有可能成立的结论的个数为(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

若α是第二象限的角,则角
α
2
所在的象限是(  )
A、第一象限
B、第二象限
C、第一象限或第二象限
D、第一象限或第三象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|y=
x
},且M∪N=M,则集合N可能是(  )
A、{-1,0,1}
B、{1,2}
C、{x|x≤1}
D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定圆A:(x+
3
2+y2=16的圆心A,动圆M过点B(
3
,0),且与圆A相切,动圆的圆心M的轨迹记为C.
(1)求曲线C的方程;
(2)设不垂直于x轴的直线l与上述曲线C交于不同的两点P,Q,点D(-3,0),若x轴是∠PDQ的角平分线,证明直线l过定点.

查看答案和解析>>

同步练习册答案