精英家教网 > 高中数学 > 题目详情
对于函数f(x)=a-
2
2x+1
(a∈R)
(1)判断函数f(x)的单调性并给出证明;
(2)若存在实数a使函数f(x)是奇函数,求a;
(3)对于(2)中的a,若f(x)≥
m
2x
,当x∈[2.3]恒成立,求m的最大值.
考点:函数恒成立问题,函数单调性的判断与证明,函数奇偶性的判断
专题:函数的性质及应用
分析:(1)设x1,x2∈R,且x1<x2,由定义法能推导出f(x1)-f(x2)<0,从而得到不论a为何实数,f(x)在定义域上单调递增.
(2)由f(-x)=-f(x),得a-
1
2-x+1
=a-
1
2x+1
,由此能示出a.
(3)由条件可得m≤2x(1-
2
2x+1
)=(2x+1)+
2
2x+1
-3恒成立,从而m≤(2x+1)+
2
2x+1
-3的最小值,x∈[2,3],由此能求出m的最大值.
解答: 解:(1)不论a为何实数,f(x)在定义域上单调递增.
证明:设x1,x2∈R,且x1<x2
f(x1)-f(x2)=(a-
1
2x1+1
)-(a-
1
2x2+1
)

=
2(2x1-2x2)
(2x1+1)(2x2+1)

由x1<x2,知0<2x12x2
2x1-2x202x2+1>0
∴f(x1)-f(x2)<0,
∴不论a为何实数,f(x)在定义域上单调递增.
(2)∵存在实数a使函数f(x)是奇函数,
∴由f(-x)=-f(x),得a-
1
2-x+1
=a-
1
2x+1

解得a=1.
(3)由条件可得m≤2x(1-
2
2x+1
)=(2x+1)+
2
2x+1
-3恒成立,
m≤(2x+1)+
2
2x+1
-3恒成立,
m≤(2x+1)+
2
2x+1
-3的最小值,x∈[2,3],
设t=2x+1,则t∈[5,9],函数g(t)=t+
2
t
-3在[5,9]上单调递增,
∴g(t)的最小值是g(5)=
12
5
,m
12
5

∴m的最大值为
12
5
点评:本题考查函数f(x)的单调性的判断与证明,考查实数值的求法,考查使不等式恒成立的实数的最大值的求法,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,执行相应的程序,则输出的S值为(  )
A、31B、32C、63D、64

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)证明:对任意实数b,函数y=f(x)的图象与直线y=
1
2
x+b最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,G是正方体ABCD-A1B1C1D1的棱的DD1延长线上的一点,E、F是棱AB、BC的中点,试分别画出:
(1)过点G、A、C的平面与正方体表面的交线;
(2)过点E、F、D1的平面与正方体表面的交线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-3,且2an+1an+an+1+4an+3=0(n∈N*),记bn=
1
an+1
(n∈N*).
(1)求证:数列{bn+2}为等比数列,并求数列{bn}的通项公式;
(2)设数列{
1
2nanbn
}的前n项和Sn,求证:Sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
1+x2

(I)判断f(x)的奇偶性;
(Ⅱ)确定函数f(x)在(-∞,0)上是增函数还是减函数?证明你的结论.
(Ⅲ)若对任意x∈[1,2]都有f(x)≤
a
2
-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值:
(1)(2
1
4
 
1
2
-(9.6)0-(3
3
8
 -
2
3
+(1
1
2
-2
(2)log3
1
3
+lg25+lg4+7 log72

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x(a∈R)
(1)当a=1时,求函数f(x)的零点.
(2)若
1
3
≤a≤1,且函数f(x)=ax2-2x在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a).求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2-2ax在x∈[-1,1]上的最小值.

查看答案和解析>>

同步练习册答案