精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程.

(Ⅰ)求直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)若直线与曲线交于两点,求的大小.

【答案】(Ⅰ)直线的极坐标方程为;曲线的直角坐标方程为;(Ⅱ).

【解析】

(Ⅰ)通过消参即得直线的普通方程,再通过直角坐标和极坐标的互化,即可得到直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设的极坐标分别为,根据极角的的意义,则:,联立直线的极坐标方程和圆的极坐标方程,消去,计算即可得解.

(Ⅰ)由得直线的普通方程为

又因为

所以直线的极坐标方程为.

曲线的极坐标方程为

即曲线的直角坐标方程为.

(Ⅱ)设的极坐标分别为

消去

化为,即

不妨设,即

所以,或

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在极坐标系中,曲线C1是以C140)为圆心的半圆,曲线C2是以为圆心的圆,曲线C1C2都过极点O

1)分别写出半圆C1C2的极坐标方程;

2)直线l与曲线C1C2分别交于MN两点(异于极点O),PC2上的动点,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过椭圆的焦点,且椭圆的中心关于直线的对称点的横坐标为为椭圆的焦距).

1)求椭圆的方程;

2)是否存在过点,且交椭圆于点的直线,满足.若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,平行四边形中,沿折起到的位置,使平面平面

)求证:

)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某语文报社为研究学生课外阅读时间与语文考试中的作文分数的关系,随机调查了本市某中学高三文科班名学生每周课外阅读时间(单位:小时)与高三下学期期末考试中语文作文分数,数据如下表:

1

2

3

4

5

6

38

40

43

45

50

54

1)根据上述数据,求出高三学生语文作文分数与该学生每周课外阅读时间的线性回归方程,并预测某学生每周课外阅读时间为小时时其语文作文成绩;

2)从这人中任选人,这人中至少有人课外阅读时间不低于小时的概率.

参考公式:,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线的焦点为是坐标原点,为抛物线上的一点,向量轴正方向的夹角为60°,且的面积为.

1)求抛物线的方程;

2)若抛物线的准线与轴交于点,点在抛物线上,求当取得最大值时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的焦点为,过的直线两点,过作与轴垂直的直线,又知点,直线记为交于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,点的横坐标是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

同步练习册答案