【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程
.
(Ⅰ)求直线
的极坐标方程和曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
交于
,
两点,求
的大小.
科目:高中数学 来源: 题型:
【题目】如图,在极坐标系中,曲线C1是以C1(4,0)为圆心的半圆,曲线C2是以
为圆心的圆,曲线C1、C2都过极点O.
![]()
(1)分别写出半圆C1,C2的极坐标方程;
(2)直线l:
与曲线C1,C2分别交于M、N两点(异于极点O),P为C2上的动点,求△PMN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
过椭圆
的焦点,且椭圆
的中心
关于直线
的对称点的横坐标为
(
为椭圆
的焦距).
![]()
(1)求椭圆
的方程;
(2)是否存在过点
,且交椭圆
于点
的直线
,满足
.若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的
,
,
三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 |
|
|
|
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自
,
,
各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某语文报社为研究学生课外阅读时间与语文考试中的作文分数的关系,随机调查了本市某中学高三文科班
名学生每周课外阅读时间
(单位:小时)与高三下学期期末考试中语文作文分数
,数据如下表:
| 1 | 2 | 3 | 4 | 5 | 6 |
| 38 | 40 | 43 | 45 | 50 | 54 |
(1)根据上述数据,求出高三学生语文作文分数
与该学生每周课外阅读时间
的线性回归方程,并预测某学生每周课外阅读时间为
小时时其语文作文成绩;
(2)从这
人中任选
人,这
人中至少有
人课外阅读时间不低于
小时的概率.
参考公式:
,其中
,![]()
参考数据:
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若抛物线
的焦点为
,
是坐标原点,
为抛物线上的一点,向量
与
轴正方向的夹角为60°,且
的面积为
.
(1)求抛物线
的方程;
(2)若抛物线
的准线与
轴交于点
,点
在抛物线
上,求当
取得最大值时,直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的焦点为
和
,过
的直线
交
于
两点,过
作与
轴垂直的直线
,又知点
,直线
记为
,
与
交于点
.设
,已知当
时,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求证:无论
如何变化,点
的横坐标是定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com