精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=2x3-3x2-12x,则f(x)在区间[-2,1]上的取值范围是(  )
A.[-13,-4]B.[-20,7]C.[-4,7]D.[-13,7]

分析 求出函数的导数,求得导数为0的根,注意定义域的运用,再求极值和端点处的函数值,比较即可得到最值,进而得到所求范围.

解答 解:f(x)=2x3-3x2-12x的导数为f′(x)=6x2-6x-12,
由f′(x)=0,解得x=-1(2舍去),
由f(-1)=-2-3+12=7,
f(1)=2-3-12=-13,
f(-2)=-18-12+24=-6,
即有f(x)的最小值为-13,最大值为7.
则f(x)在区间[-2,1]上的取值范围是[-13,7].
故选D.

点评 本题考查导数的运用:求最值,注意函数的定义域的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角梯形ABCO中,OA∥BC,OA⊥OC,在OA,BC边上分别有两点P,Q,若PQ平分该梯形的面积,求证:直线PQ必过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若cos(2α+$\frac{π}{6}$)=$\frac{4}{5}$,则sin(α+$\frac{π}{12}$)=$±\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+a}{x}$(a∈R),f′(1)=0.
(1)求实数a的值;
(2)证明当x≥1时,f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=lnx,g(x)=$\frac{a}{x}$(a是常数),F(x)=f(x)-g(x)
(Ⅰ)当a<0时,求函数F(x)的单调区间;
(Ⅱ)若F(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(Ⅲ)是否存在实数m,使得函数y=g($\frac{2a}{{x}^{2}+1}$)+m-1(a≠0)的图象与函数y=f(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=ax3+bx2+cx在R上是奇函数,且 f(-1)=-2,f(2)=10.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)说明 f(x)在R上的单调性(不需要证明);
(Ⅲ)若关于x的不等式 f(x2-9)+f(kx+3k)<0在 x∈(0,1)上恒成立,求实数k是的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-1B1C1中,已知AB⊥侧面BB1CC1,BC=$\sqrt{2}$,AB=BB1=2,∠BCC1=$\frac{π}{4}$,点E为棱BB1的中点
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点E到平面ACC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为$\frac{4}{5}$,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为$\frac{24}{125}$,都未取得优秀成绩的概率为$\frac{6}{125}$,且不同课程是否取得优秀成绩相互独立.
(1)求m,n.
(2)设X为该同学取得优秀成绩的课程门数,求EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知a=10,∠B=45°,∠A=30°,解此三角形.

查看答案和解析>>

同步练习册答案