分析 (1)判断对称轴x=2a与区间[1,2]的位置关系,分类讨论求a值;
(2)不等式f(x)>0对于任意的x∈[-2,-1]恒成立即转化为即$\frac{1}{2}$($\frac{{x}^{2}}{x-1}$)<a 在任意的x∈[-2,-1]时左边函数的最大值.
解答 解:一元二次函数开口朝上,对称轴为x=2a;
(1)①当2a≤1,即a$≤\frac{1}{2}$时,最小值为f(1)=1-2a+2a=0,与题意不符,舍去;
②当1<2a<2,即$\frac{1}{2}$<a≤1时,最小值为f(2a)=4a2-4a2+2a=2a=-3,解得a=-$\frac{3}{2}$,与题意不符,舍去;
③当2a≥2,即a>1时,最小值为f(2)=4-4a+2a=4-2a=-3,解得a=$\frac{7}{2}$,满足题意;
综上可知,a=$\frac{7}{2}$.
(2)∵x∈[-2,-1],f(x)=x2-2ax+2a>0,
化简后:$\frac{{x}^{2}}{2x-2}$<a,即$\frac{1}{2}$($\frac{{x}^{2}}{x-1}$)<a;
令h(x)=$\frac{x-1}{{x}^{2}}$=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$;
换元t=$\frac{1}{x}$∈[-1,-$\frac{1}{2}$],得:g(t)=t-t2,g(t)在t∈[-1,-$\frac{1}{2}$]上单调递增,
故g(t)∈[-2,-$\frac{3}{4}$]⇒$\frac{1}{2}$×$\$ $\frac{{x}^{2}}{x-1}$∈[-$\frac{2}{3}$,-$\frac{1}{4}$];
所以,a≥-$\frac{1}{4}$.
点评 本题主要考查了一元二次函数的基本图形性质,以及分离参数法与恒成立问题,属中等题.
科目:高中数学 来源: 题型:解答题
| X | 1 | 2 | 3 | 4 |
| Y | 51 | 48 | 45 | 42 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{2}x$ | B. | $y=\sqrt{3}x$ | C. | y=2x | D. | y=4x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 正三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={5^{\frac{1}{2-x}}}$ | B. | $y={({\frac{1}{3}})^{1-x}}$ | C. | $y=\sqrt{1-{2^x}}$ | D. | $y=\sqrt{{{(\frac{1}{2})}^x}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com