精英家教网 > 高中数学 > 题目详情
18.已知复数z=$\frac{-1-2i}{{{{(1+i)}^2}}}$,则$\overline z$=(  )
A.-$\frac{3}{4}+\frac{1}{4}$iB.-$\frac{1}{4}+\frac{3}{4}$iC.-1+$\frac{1}{2}$iD.-1-$\frac{1}{2}$i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:复数z=$\frac{-1-2i}{{{{(1+i)}^2}}}$=$\frac{-1-2i}{2i}$=$\frac{(1+2i)•i}{-2i•i}$=$\frac{-2+i}{2}$,则$\overline z$=-1-$\frac{1}{2}$i.
故选:D.

点评 本题考查了复数的运算法则、共轭复数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{x^3}+3,x≤0}\end{array}}$,当2<a≤3时,则方程f(2x2+x)=a的根最多个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合$A=\left\{{x\left|{y=\sqrt{1-x}}\right.}\right\}$,B={x|1≤3x≤9},则A∩B=(  )
A.[-1,0]B.[0,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,圆柱OO1内接直三棱柱ABC-A1B1C1,该三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径,且AB=AA1.在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P
(1)当点C在圆周上运动时,求P的最大值;
(2)记平面A1ACC1与平面B1OC所成的角为θ(0°<θ≤90°),当P取最大值时,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sinωx(0<ω<2)在区间,[0,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3}$,$\frac{2π}{3}$]单调递减;如图,四边形OACB中,a,b,c为△ABC的内角A,B,C的对边,且满足$\frac{sinB+sinC}{sinA}$=$\frac{\frac{4ω}{3}-cosB-cosC}{cosA}$.
(1)证明:b+c=2a;
(2)若b=c,设∠AOB=θ,(0<θ<π),OA=2OB=2,求四边形OACB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正实数a,b满足:a+b=2.
(Ⅰ)求$\frac{1}{a}+\frac{1}{b}$的最小值m;
(Ⅱ)设函数f(x)=|x-t|+|x+$\frac{1}{t}$|(t≠0),对于(Ⅰ)中求得的m,是否存在实数x,使得f(x)=m成立,若存在,求出x的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}=({e}^{x},1)$,向量$\overrightarrow{b}=(1,x-1)$,设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,则函数f(x)的零点个数为(  )
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是(  )
A.k>-$\frac{b}{a}$B.k<$\frac{b}{a}$C.k>$\frac{b}{a}$或k<-$\frac{b}{a}$D.-$\frac{b}{a}$<k<$\frac{b}{a}$

查看答案和解析>>

同步练习册答案