分析 (1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;
(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=$2\sqrt{2}a$.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得$\overrightarrow{PD}$为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A-PB-C的余弦值.
解答 (1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,![]()
∵AB∥CD,∴AB⊥PD,
又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,
∴AB⊥平面PAD,又AB?平面PAB,
∴平面PAB⊥平面PAD;
(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,
由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,
在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,
设PA=AB=2a,则AD=$2\sqrt{2}a$.
取AD中点O,BC中点E,连接PO、OE,
以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,
则:D($-\sqrt{2}a,0,0$),B($\sqrt{2}a,2a,0$),P(0,0,$\sqrt{2}a$),C($-\sqrt{2}a,2a,0$).
$\overrightarrow{PD}=(-\sqrt{2}a,0,-\sqrt{2}a)$,$\overrightarrow{PB}=(\sqrt{2}a,2a,-\sqrt{2}a)$,$\overrightarrow{BC}=(-2\sqrt{2}a,0,0)$.
设平面PBC的一个法向量为$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\sqrt{2}ax+2ay-\sqrt{2}az=0}\\{-2\sqrt{2}ax=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}=(0,1,\sqrt{2})$.
∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,
又PD⊥PA,PA∩AB=A,
∴PD⊥平面PAB,则$\overrightarrow{PD}$为平面PAB的一个法向量,$\overrightarrow{PD}=(-\sqrt{2}a,0,-\sqrt{2}a)$.
∴cos<$\overrightarrow{PD},\overrightarrow{n}$>=$\frac{\overrightarrow{PD}•\overrightarrow{n}}{|\overrightarrow{PD}||\overrightarrow{n}|}$=$\frac{-2a}{2a×\sqrt{3}}=-\frac{\sqrt{3}}{3}$.
由图可知,二面角A-PB-C为钝角,
∴二面角A-PB-C的余弦值为$-\frac{\sqrt{3}}{3}$.
点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 箱产量<50kg | 箱产量≥50kg | |
| 旧养殖法 | ||
| 新养殖法 |
| P(K2≥K) | 0.050 | 0.010 | 0.001 |
| K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2 | |
| B. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{12}$个单位长度,得到曲线C2 | |
| C. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2 | |
| D. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{12}$个单位长度,得到曲线C2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7}{9}$ | B. | -$\frac{2}{9}$ | C. | $\frac{2}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减 | B. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增 | ||
| C. | 在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递减 | D. | 在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com