分析 根据诱导公式,以及分类讨论即可求出函数的值域.
解答 解:当k为偶数时,f(x)=$\frac{sin(kπ-x)}{sinx}$-$\frac{cosx}{cos(kπ-x)}$+$\frac{tan(kπ-x)}{tanx}$-$\frac{cotx}{cot(kπ-x)}$=-$\frac{sinx}{sinx}$-$\frac{cosx}{cosx}$+$\frac{-tanx}{tanx}$-$\frac{costx}{costx}$=1-1-1+1=-2,
当k为奇数时,f(x)=$\frac{sin(kπ-x)}{sinx}$-$\frac{cosx}{cos(kπ-x)}$+$\frac{tan(kπ-x)}{tanx}$-$\frac{cotx}{cot(kπ-x)}$=$\frac{sinx}{sinx}$+$\frac{cosx}{cosx}$+$\frac{-tanx}{tanx}$-$\frac{costx}{costx}$=1+1-1+1=2,
故函数的值域为{-2,2}.
点评 本题主要考查了诱导公式,以及分类讨论的思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | f(x)=2x-3x |
| 0.25 | 0.44 |
| 0.375 | 0.17 |
| 0.4375 | 0.04 |
| 0.46875 | -0.02 |
| 0.5 | -0.08 |
| A. | 0.375 | B. | 0.4375 | C. | 0.46875 | D. | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com