精英家教网 > 高中数学 > 题目详情
18.已知3a=2,2b=3,则a+b的取值范围为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 先根据对数式和指数式的互相转化,再分别判断a,b的范围,即可求出a+b的范围.

解答 解:∵3a=2,2b=3,
∴a=log32,b=log23,
∴a+b=log32+log23
∵$\frac{1}{2}$=log3$\sqrt{3}$<log32<log33=1,1=log22<log23<log24=2,
∴$\frac{3}{2}$<a+b<3,
∵a+b=log32+log23=a+b=log32+$\frac{1}{lo{g}_{3}2}$>2,
∴2<a+b<3,
故选:C.

点评 本题考查了对数函数的图象和性质以及基本不等式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an},a1=1,a2=2,前n项和为Sn,且满足(Sn+2-Sn+1)-2(Sn+1-Sn)=2,n∈N*,则{an}的通项an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n}-2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.写出等差数列3,7,11,…的第4项和第10项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)的定义域是[0,3],则函数y=$\frac{f(2x-1)}{lg(2-x)}$的定义域是{x|$\frac{1}{2}$≤x<2且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,x),若$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$夹角为$\frac{π}{2}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=6$\sqrt{2}$或3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=2acosθ+b+1的最大值为4,最小值为-1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\overrightarrow{a}$•$\overrightarrow{b}$=2,且($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|2$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值为$\sqrt{7}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(Ⅰ)试确定m,使直线AP与平面BDD1B1所成角的正切值为3$\sqrt{2}$;
(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q垂直于AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列函数;
①函数y=sin(2017π+2016x)是奇函数;
②y=tanx在整个定义域内是增函数;
③x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5}{4}$π)的一条对称轴方程;
④若α,β是第一象限的角,且α>β,则sinα>sinβ
其中真确命题的序号是①③ (写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案