精英家教网 > 高中数学 > 题目详情
2.已知f′(x)是奇函数f(x)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

分析 根据题意构造函数g(x)=$\frac{f(x)}{x}$,由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.

解答 解:由题意设g(x)=$\frac{f(x)}{x}$,则g′(x)=$\frac{x{f}^{′}(x)-f(x)}{{x}^{2}}$
∵当x>0时,有xf′(x)-f(x)>0,
∴当x>0时,g′(x)>0,
∴函数g(x)=$\frac{f(x)}{x}$在(0,+∞)上为增函数,
∵函数f(x)是奇函数,
∴g(-x)=$\frac{f(-x)}{-x}$=$\frac{-f(x)}{-x}$=$\frac{f(x)}{x}$=g(x),
∴函数g(x)为定义域上的偶函数,
g(x)在(-∞,0)上递减,
由f(-1)=0得,g(-1)=0,
∵不等式f(x)>0?x•g(x)>0,
∴$\left\{\begin{array}{l}{x>0}\\{g(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{g(x)>g(1)}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<g(-1)}\end{array}\right.$,
即有x>1或-1<x<0,
∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),
故选:B.

点评 本题考查利用导数判断函数的单调性,由函数的奇偶性、单调性解不等式,考查构造函数法,转化思想和数形结合思想,属于综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△AOB中,OA=OB=2,
(1)如图①:若AO⊥OB,点P为△AOB所在平面上的一个动点,且满足PO=3,求$\overrightarrow{PB}$•$\overrightarrow{OA}$的取值范围;
(2)如图②:若|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≤$\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|,求$\overrightarrow{OA}$与$\overrightarrow{OB}$所成夹角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平行四边形ABCD的对角线AC与BD相交于O,则(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{DB}$B.$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{BC}$C.$\overrightarrow{AB}$+$\overrightarrow{BO}$=$\overrightarrow{OC}$D.$\overrightarrow{AB}$-$\overrightarrow{BC}$=$\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x+y-8≤0\\ x≥1\end{array}\right.$,则z=2x-y的最大值为(  )
A.-5B.-1C.1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将数列{an}按如图所示的规律排成一个三角形表,并同时满足以下两个条件:
①各行的第一个数a1,a2,a5构成公差为d的等差数列;
②从第二行起,每行各数按从左到右的顺序构成公比为q的等比数列.
若a1=1,a3=4,a5=3,则d=1;第n行的和Tn=n•22n-1-n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法为:行李质量不超过50kg,按0.25元/kg计算;超过50kg而不超过100kg时,其超过部分按0.35元/kg计算,超过100kg时,其超过部分按0.45元/kg计算.设行李质量为xkg,托运费用为y元.
(Ⅰ)写出函数y=f(x)的解析式;
(Ⅱ)若行李质量为56kg,托运费用为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),若a=2b,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$2\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{1}{2}$,它的一个顶点恰好是抛物线x2=8$\sqrt{3}$y的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P(2,3),Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=sin(x-\frac{π}{2})(x∈R)$,下面结论错误的是(  )
A.函数f(x)的最小正周期为2πB.函数f(x)在区间$[0,\frac{π}{2}]$上单调递增
C.函数f(x)的图象关于y轴对称D.点(π,0)是函数f(x)的一个对称中心

查看答案和解析>>

同步练习册答案