精英家教网 > 高中数学 > 题目详情
8.已知P:?x∈R,x2-x+4<0;则¬P为?x∈R,x2-x+4≥0.

分析 根据特称命题的否定是全称命题进行判断即可.

解答 解:特称命题的否定是全称命题得¬p:?x∈R,x2-x+4≥0,
故答案为:?x∈R,x2-x+4≥0.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.曲线的极坐标方程为ρ=2cosθ,则曲线的直角坐标方程为(  )
A.(x-1)2+y2=1B.x2+(y-1)2=1C.(x-2)2+y2=1D.x2+(y-2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.我市在“录像课评比”活动中,评审组将从录像课的“点播量”和“专家评分”两个角度来进行评优.若A录像课的“点播量”和“专家评分”中至少有一项高于B课,则称A课不亚于B课.假设共有5节录像课参评,如果某节录像课不亚于其他4节,就称此节录像课为优秀录像课.那么在这5节录像课中,最多可能有5节优秀录像课.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A(-1,0),B(3,0),则与A距离为1且与B距离为4的点有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f'(x)+$\frac{1}{2}$<4x.若f(m+1)≤f(-m)+3m+$\frac{3}{2}$,则实数m的取值范围是(  )
A.$[{-\frac{1}{2},+∞})$B.$[{-\frac{3}{2},+∞})$C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,0<α<π,则tan(α-$\frac{π}{4}$)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在空间中,下列命题正确的是(  )
A.经过三个点有且只有一个平面
B.经过一个点和一条直线有且只有一个平面
C.经过一条直线和直线外一点的平面有且只有一个
D.经过一个点且与一条直线平行的平面有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)在其定义域的一个子集[a,b]上存在实数m(a<m<b),使f(x)在m处的导数f'(m)满足f(b)-f(a)=f'(m)(b-a),则称m是函数f(x)在[a,b]上的一个“中值点”,函数$f(x)=\frac{1}{3}{x^3}-{x^2}$在[0,b]上恰有两个“中值点”,则实数b的取值范围是(  )
A.$(\frac{2}{3},3)$B.(3,+∞)C.$(\frac{3}{2},3)$D.$({\frac{3}{2},3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的程序框图,运行程序后,输出的结果等于(  )
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案