精英家教网 > 高中数学 > 题目详情
2.在△ABC中,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,则$|{\overrightarrow{AC}}|$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

分析 首先通过设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,得到三角形的∠B的大小,然后利用余弦定理求对边AC长度.

解答 解:由已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{BC}=\overrightarrow b$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=-1$,得到cos(π-B)=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=-\frac{1}{2}$,所以B=$\frac{π}{3}$,所以AC2=AB2$+B{C}^{2}-2AB×BC×cos\frac{π}{3}$=3,所以AC=$\sqrt{3}$;
故选:C.

点评 本题考查了平面向量的数量积公式的应用以及利用余弦定理求三角形的内角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x2+2.
(1)求函数的单调区间;  
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“方程x2-4=0的解是x=±2”中,使用的逻辑联结词的情况是(  )
A.没有使用联结词B.使用了逻辑联结词“或”
C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正项等差数列{an}中有$\frac{{{a_{41}}+{a_{42}}+…+{a_{60}}}}{20}=\frac{{{a_1}+{a_2}+…+{a_{100}}}}{100}$成立,则在正项等比数列{bn}中,类似的结论为$\root{20}{{b}_{41}•{b}_{42}•{b}_{43•}…•{b}_{60}}=\root{100}{{b}_{1}•{b}_{2}•{b}_{3}•…•{b}_{100}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如右的列联表,经计算,统计量K2的观测值k2≈5.762,参照附表,则所得到的统计学结论为:有(  )把握认为“爱好该项运动与性别有关”.
总计
爱好104050
不爱好203050
总计3070100
A.0.25%B.2.5%C.97.5%D.99.75%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101
(Ⅱ)求数列{bn}的前1 000项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={3,a},N={x|x2-3x<0,x∈Z},M∩N={1},则M∪N为(  )
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数h(x)=x3-x+6lnx图象上任意不同的两点的连线的斜率都大于m,则实数m的范围为(-∞,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{m^2}-{y^2}=1$的焦距是4,则该双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{17}}}{17}x$B.$y=±\frac{{\sqrt{5}}}{5}x$C.$y=±\frac{{\sqrt{15}}}{15}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

同步练习册答案