精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A,B,C的对边分别是a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(Ⅰ)求证:tanA=3tanB;
(Ⅱ)若B=45°,b=$\sqrt{5}$,求△ABC的面积.

分析 (Ⅰ)题中等式利用正弦定理化简,利用同角三角函数间基本关系整理即可得证;
(Ⅱ)由tanB的值确定出tanA的值,进而求出sinA与cosA的值,由sinC=sin(A+B),利用两角和与差的正弦函数公式化简,将各自的值代入求出sinC的值,利用正弦定理求出c的值,由b,c,sinA的值,利用三角形面积公式即可求出三角形ABC面积.

解答 解:(Ⅰ)∵acosB-bcosA=$\frac{1}{2}$c,
∴由正弦定理化简得:sinAcosB-sinBcosA=$\frac{1}{2}$sinC=$\frac{1}{2}$sin(A+B)=$\frac{1}{2}$sinAcosB+$\frac{1}{2}$cosAsinB,
整理得:sinAcosB=3cosAsinB,
∵cosAcosB≠0,
∴tanA=3tanB;
(Ⅱ)∵tanA=3,∴sinA=$\frac{3}{\sqrt{10}}$,cosA=$\frac{1}{\sqrt{10}}$,
由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$得:a=$\frac{bsinA}{sinB}=3$
∵sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{3}{\sqrt{10}}×\frac{\sqrt{2}}{2}+\frac{1}{\sqrt{10}}×\frac{\sqrt{2}}{2}=\frac{2}{\sqrt{5}}$
∴∴S△ABC=$\frac{1}{2}$absinC$\frac{1}{2}$×3×$\sqrt{5}$×$\frac{2}{\sqrt{5}}$3.

点评 此题考查了正弦定理,同角三角函数间的基本关系,熟练掌握正弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.不等式λ(x2+y2+z2)≥xy+2yz对于任意非零实数x,y,z均成立,则实数λ的最小值为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,△OBC为等腰直角三角形,∠BOC=90°,OB=3,BD=1,一束光线从点D入射,先后经过斜边BC与直角边OC反射后,恰好从点D射出,则该光线所走的路程是$\sqrt{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=$\frac{2z+i}{1+3i}$(i为虚数单位),则|z|=(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{1}{3}$C.$\frac{1}{10}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点M(-lna,0),N(lna,0),其中a>1,若圆C:x2+(y-2)2=1上不存在点P,使得∠MPN=90°,则实数a的取值范围是(1,e)∪(e3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:(x+1)2+y2=4和圆外一点A(1,2$\sqrt{3}$).
(1)若直线m经过原点O,且圆C上恰有三个点到直线m的距离为1,求直线m的方程;
(2)若经过A的直线l与圆C相切,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把二进制数101001(2)化为十进制数为41.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求数列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…,$\frac{1}{(2n-1)(2n+1)}$,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-2)的值为(  )
A.$-\frac{8}{9}$B.$-\frac{1}{9}$C.-8D.8

查看答案和解析>>

同步练习册答案