精英家教网 > 高中数学 > 题目详情
14.求数列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…,$\frac{1}{(2n-1)(2n+1)}$,…的前n项和Sn

分析 直接利用裂项法求解数列的和即可.

解答 解:因为$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
所以Sn=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$[1-$\frac{1}{3}+\frac{1}{3}-\frac{1}{5}$+$\frac{1}{5}-\frac{1}{7}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$]
=$\frac{1}{2}×(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

点评 本题考查数列求和,裂项消项法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.“a<2”是“a2-2a<0”的(  )
A.充分非必要条件B.既不充分也不必要条件
C.充要条件D.必要非充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别是a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(Ⅰ)求证:tanA=3tanB;
(Ⅱ)若B=45°,b=$\sqrt{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设复数z1=3+2i,z2=1+bi,其中b∈R,i是虚数单位.
(1)若b=1,z=z1-z2,求z的共轭复数$\overline{z}$;
(2)若z1•z2是纯虚数,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(cosx)=sin2x,则f(-sinx)等于(  )
A.-cos2xB.cos2xC.-sin2xD.sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是$\frac{{2\sqrt{3}}}{3}$,则其底面周长为(  )
A.$2({\sqrt{3}+1})$B.$2({\sqrt{5}+1})$C.$2({\sqrt{2}+2})$D.$\sqrt{5}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow a$与$\overrightarrow b$均为单位向量,它们的夹角为60°,那么$|3\overrightarrow a+2\overrightarrow b|$=(  )
A.$\sqrt{7}$B.1C.$\sqrt{19}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列参数方程与普通方程x2+y-1=0表示同一曲线的方程是(  )
A.$\left\{{\begin{array}{l}{x=sint}\\{y={{cos}^2}t}\end{array}}\right.$(t为参数)B.$\left\{\begin{array}{l}{x=tanφ}\\{y=1-ta{n}^{2}φ}\end{array}\right.$(φ为参数)
C.$\left\{{\begin{array}{l}{x=\sqrt{1-t}}\\{y=t}\end{array}}\right.$(t为参数)D.$\left\{{\begin{array}{l}{x=cosθ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC中,AB=1,$\overrightarrow{AB}$$•\overrightarrow{AC}$=2,当角C最大时,△ABC的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案