分析 直接利用裂项法求解数列的和即可.
解答 解:因为$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
所以Sn=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$[1-$\frac{1}{3}+\frac{1}{3}-\frac{1}{5}$+$\frac{1}{5}-\frac{1}{7}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$]
=$\frac{1}{2}×(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
点评 本题考查数列求和,裂项消项法的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2({\sqrt{3}+1})$ | B. | $2({\sqrt{5}+1})$ | C. | $2({\sqrt{2}+2})$ | D. | $\sqrt{5}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 1 | C. | $\sqrt{19}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{{\begin{array}{l}{x=sint}\\{y={{cos}^2}t}\end{array}}\right.$(t为参数) | B. | $\left\{\begin{array}{l}{x=tanφ}\\{y=1-ta{n}^{2}φ}\end{array}\right.$(φ为参数) | ||
| C. | $\left\{{\begin{array}{l}{x=\sqrt{1-t}}\\{y=t}\end{array}}\right.$(t为参数) | D. | $\left\{{\begin{array}{l}{x=cosθ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ为参数) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com