精英家教网 > 高中数学 > 题目详情
半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,圆柱的侧面积与球的表面积之比是
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值,计算球的表面积,即可得到两者的比值.
解答: 解:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=
π
4
时,sin2α=1,圆柱的侧面积最大,
圆柱的侧面积为:2πR2,球的表面积为:4πR2
所以圆柱的侧面积与球的表面积之比是1:2.
故答案为:1:2.
点评:本题是基础题,考查球的内接圆柱的知识,球的表面积,圆柱的侧面积的最大值的求法,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若M为RT△ABC斜边AB的中点,PM⊥平面ABC,则(  )
A、PA=PB=PC
B、PA=PB>PC
C、PA=PB<PC
D、PA≠PB

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEF 均为菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求证:平面BDEF⊥平面ABCD;
(3)若AB=2,求三棱锥C-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=1+2t
y=
1
2
-t
,曲线C的参数方程为
x=2cosθ
y=sinθ
,设直线l与曲线C交于两点A,B.
(1)求|AB|;
(2)设P为曲线C上的一点,当△ABP的面积取最大值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

空间三条直线,任何两条不共面,且两两互相垂直,另一条直线l与这三条直线所成的角均为α,则tanα=(  )
A、1
B、
2
C、
3
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图如图所示,则此几何体的体积等于(  )
A、4B、12C、24D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知E:(x+
3
2+y2=16,点F(
3
,0),点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于点Q.记动点Q的轨迹为C,另有动点M(x,y)(x≥0)到点N(2,0)的距离比它到直线x=-1的距离多1,记点M的轨迹为C1,轨迹C2的方程为x2=y
(1)求轨迹C和C1的方程
(2)已知点T(-1,0),设轨迹C1与C2异于原点O的交点为R,若懂直线l与直线OR垂直,且与轨迹C交于不同的两点A、B,求
TA
TB
的最小值
(3)在满足(2)中的条件下,当
TA
TB
取得最小值时,求△TAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为(  )
A、长方形B、直角三角形
C、圆D、椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,有下列命题:
①若ab>c2,则C<
π
3

②若a+b>2c,则C<
π
3

③若(a+b)c<2ab,则C>
π
2

④若a2+b2=c2,则C<
π
2

其中正确的命题的序号为
 

查看答案和解析>>

同步练习册答案