精英家教网 > 高中数学 > 题目详情
4.如图,直四棱柱ABCD-A1B1C1D1底面是边长为1的正方形,高AA1=$\sqrt{2}$,点A是平面α内的一个定点,AA1与α所成角为$\frac{π}{3}$,点C1在平面α内的射影为P,当四棱柱ABCD-A1B1C1D1按要求运动时(允许四棱柱上的点在平面α的同侧或异侧),点P所经过的区域的面积=$2\sqrt{3}π$.

分析 由题意,点A是平面α内的一个定点,AA1与α所成角为$\frac{π}{3}$,四棱柱ABCD-A1B1C1D1按要求运动,为A定点的旋转运动和定直线AA1旋转运动.再作点C1在平面α内的射影为P的轨迹扫过的图形,即可得到点P所经过的区域的面积.

解答
解:当长方体绕A1A转的时候,C1C形成一个圆柱,过C1往平面α作垂线垂足P,就形成一个椭圆,其短轴为P1P2=$\sqrt{6}$,长轴为$2\sqrt{2}$ 的y型的椭圆,其中心A点在平面α上的射影M.
当AA1绕着A点转时,则椭圆就以A为圆心,$\frac{\sqrt{2}}{2}$为半径的圆上运动,其扫过的区域为一个圆环,外径为$\frac{\sqrt{2}+\sqrt{6}}{6}$,内径为$\frac{\sqrt{6}-\sqrt{2}}{2}$,
所以面积为:[($\frac{\sqrt{2}+\sqrt{6}}{6}$)2-$(\frac{\sqrt{6}-\sqrt{2}}{2})^{2}$]•π=$2\sqrt{3}π$
故填:$2\sqrt{3}π$.

点评 本题考查了立体几何中以定点旋转和定直线旋转运动形成的图形的面积问题.注重空间思维的想象力的培养和作图能力,数形结合和转化的思想的灵活性的运用.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{4}{5}$,α是第三象限的角,则$sin(α+\frac{π}{4})$=(  )
A.-$\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a,b,c是不全相等的正数,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,前n项和为Sn,且${S_n}=\frac{{{a_n}({a_n}+1)}}{2}(n∈{N^*})$,
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设${b_n}=\frac{1}{S_n},{T_n}={b_1}+{b_2}+…+{b_n}$,若λ≤Tn对于任意n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若框图所给的程序运行的结果为S=90,那么判断框中应填入的关于k的判断条件是(  )
A.k<7B.k<8C.k<9D.k<10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(cosx)=cos2x,则f(1)=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数g(x)的导函数为g′(x),满足g′(x)-g(x)<0,若函数g(x)的图象关于直线x=2对称,且g(4)=1,则不等式$\frac{g(x)}{e^x}$>1的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为平面内任意非零向量且互不共线,则下列4个命题:
(1)($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2$\overrightarrow{b}$2  
(2)|$\overrightarrow{a}$+$\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\overrightarrow{b}$|
(3)|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2
(4)($\overrightarrow{b}$•$\overrightarrow{c}$)$\overrightarrow{a}$-($\overrightarrow{c}$•$\overrightarrow{a}$)$\overrightarrow{b}$与$\overrightarrow{c}$不一定垂直.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设奇函数f(x)在区间[3,5]上是增函数,且f(3)=4,则f(x)在区间[-5,-3]的最大值为-4.

查看答案和解析>>

同步练习册答案