精英家教网 > 高中数学 > 题目详情
11.已知项数为2n+1的等差数列{an}满足a1+a2n+1≠0,所有奇数项的和为S,所有偶数项的和为S,则$\frac{{S}_{奇}}{{S}_{偶}}$的值为$\frac{n+1}{n}$.

分析 利用等差数列的通项公式性质及其前n项和公式即可得出.

解答 解:等差数列{an}满足a1+a2n+1≠0,
所有奇数项的和为S=$\frac{(n+1)({a}_{1}+{a}_{2n+1})}{2}$=(n+1)an+1
所有偶数项的和为S=$\frac{n({a}_{2}+{a}_{2n})}{2}$=nan+1≠0.
则$\frac{{S}_{奇}}{{S}_{偶}}$=$\frac{n+1}{n}$,
故答案为:$\frac{n+1}{n}$.

点评 本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.直角梯形ABCD满足AB∥CD,AD=CD=$\frac{1}{2}$AB=1,AD⊥AB,点M是梯形边上的任意一点.则AM≥$\sqrt{2}$的概率是(  )
A.$\frac{4+\sqrt{2}}{7}$B.$\frac{4-\sqrt{2}}{7}$C.$\frac{4+\sqrt{2}}{8}$D.$\frac{4-\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z=$\frac{(1+2i)^{4}}{(3-i)^{2}}$,则|z|=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a,b,c分别是角A,B,C所对的边,cos2B-$\sqrt{3}$cos(A+C)=2.
(1)求角B的大小;
(2)若b=2,求AC边上高h的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin20°cos40°+sin70°sin140°的值等于(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=xln(x+$\sqrt{2a+{x}^{2}}$)的图象关于y轴对称,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,点E是平行四边形ABCD对角线BD的4等分点中最靠近点D的那个分点,线段AE的延长线交CD于点F,若|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,<$\overrightarrow{AB}$,$\overrightarrow{AD}$>=60°,则$\overrightarrow{AF}$•$\overrightarrow{AD}$的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等差数列{an}共有2n-1项,其中奇数项之和为144,偶数项之和为132,则an为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题.重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学认为“不过关”,现随机调查了年级50人,他们的测试成绩的频数分别如表:
 期末分数段 (0,60)[60,75)[75,90)[90,105)[105,120)[120,150]
 人数 5 10 15 10 5 5
“过关”人数 2 7 4
(1)由以上统计数据完成如下2×2列联表,并判断是否有95%的把认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由.
 分数低于90分人数 分数不低于90分人数  合计
 过关人数   
 不过关人数   
 合计   
(2)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为X,求X的分布列及数学期望.
下面的临界值表供参考:
 P(K2≥k) 0.150.10  0.050.025 
 K2.072  2.7063.841  5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案