分析 (1)由题意可设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),可得c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{7}$,$\frac{9\sqrt{7}}{7}$=$\frac{{a}^{2}}{c}$,解出即可得出.
(2)由于P为椭圆上一点,利用椭圆的定义可得:|PF1|+|PF2|=6,又|PF1|=|PF2|+2,联立解得|PF1|,|PF2|.再利用余弦定理即可得出∠F1PF2.
解答 解:(1)由题意可设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),
∴c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{7}$,$\frac{9\sqrt{7}}{7}$=$\frac{{a}^{2}}{c}$,解得a=3,c=$\sqrt{7}$,b2=2.
∴椭圆的标准方程为:$\frac{{y}^{2}}{9}+\frac{{x}^{2}}{2}$=1.
(2)∵P为椭圆上一点,∴|PF1|+|PF2|=6,又|PF1|=|PF2|+2,
联立解得|PF1|=4,|PF2|=2.
∴cos∠F1PF2=$\frac{{4}^{2}+{2}^{2}-(2\sqrt{7})^{2}}{2×4×2}$=-$\frac{1}{2}$,
解得∠F1PF2=120°.
点评 本题考查了椭圆的定义标准方程及其性质、余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∨q | C. | ¬p∧q | D. | ¬p∨q |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com