精英家教网 > 高中数学 > 题目详情
16.已知集合A={-1,0,1,2,3,4},B={x|x2<16,x∈N},则A∩B等于(  )
A.{-1,0,1,2,3}B.{0,1,2,3,4}C.{1,2,3}D.{0,1,2,3}

分析 解不等式得出B,根据交集的运算写出A∩B.

解答 解:集合A={-1,0,1,2,3,4},
B={x|x2<16,x∈N}={x|-4<x<4,x∈N},
则A∩B={0,1,2,3}.
故选:D.

点评 本题考查了解不等式与集合的基本运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),右焦点$F(\sqrt{2},0)$,点$D(\sqrt{2},1)$在椭圆上;
(1)求椭圆C的标准方程;
(2)是否存在过原点的直线l与椭圆C交于A、B两点,且∠AFB=90°?若存在,请求出所有符合要求的直线;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线ax+by=1(b≥-1)和以A(1,0),B(2,1)为端点的线段相交,则$\frac{b}{a}$取不到的值为(  )
A.-1B.-2C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{2}{3}{x^3}+a{x^2}-(a-b)x+c$的两个极值点分别为x1,x2,且x1∈(-∞,-1),x2∈(-1,0),点P(a,b)表示的平面区域为D,若函数y=logm(x+2)(m>0,m≠1)的图象经过区域D,则实数m的取值范围是(  )
A.(3,+∞)B.[3,+∞)C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求曲线y=$\frac{1}{\sqrt{{x}^{2}-3x}}$在点(4,$\frac{1}{2}$)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$f(x)=\left\{{\begin{array}{l}{f(x-5),x>0}\\{{2^x}+\int_0^{\frac{π}{6}}{cos3tdt,x≤0}}\end{array}}\right.$,则f(2017)=(  )
A.$\frac{1}{24}$B.$\frac{11}{24}$C.$\frac{5}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别是a,b,c,且sin2A-sin(2B+C)=sinC.
(1)证明:a=b;
(2)若A为函数f(x)=sin($\frac{π}{4}$-x)sin($\frac{π}{4}$+x)+$\frac{1}{4}$的一个零点,且c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+a|+|x-2|的定义域为实数集R.
(Ⅰ)当a=5时,解关于x的不等式f(x)>9;
(Ⅱ)设关于x的不等式f(x)≤|x-4|的解集为A,B={x∈R|2x-1|≤3},如果A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案