精英家教网 > 高中数学 > 题目详情
若函数f(x)的反函数是f-1(x)=1+x2(x<0),则f(2)=
 
考点:反函数
专题:函数的性质及应用
分析:利用互为反函数的性质:其定义域与值域互换即可得出.
解答: 解:∵函数f(x)的反函数是f-1(x)=1+x2(x<0),
由2=1+x2(x<0),解得x=-1.
∴f(2)=-1.
故答案为:-1.
点评:本题考查了互为反函数的性质其定义域与值域互换,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax,(a∈R).
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)当lnx<ax对于x∈(0,+∞)上恒成立时,求a的取值范围;
(Ⅲ)若k,n∈N*,且1≤k≤n,证明:
1
(1+
1
n
)
n
+
1
(1+
2
n
)
n
+…+
1
(1+
k
n
)
n
+…+
1
(1+
n
n
)
n
1
e-1
(1-
1
en
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,则双曲线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:“若空间两条直线a,b分别垂直平面α,则a∥b”学生小夏这样证明:
设a,b与面α分别相交于A、B,连结AB
∵a⊥α,b⊥α,AB?α…①
∴a⊥AB,b⊥AB…②
∴a∥b…③
这里的证明有两个推理,即:①⇒②和②⇒③.
老师评改认为小夏的证明推理不正确,这两个推理中不正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D为BC边的中点,过点D的直线分别交直线AB的延长线于点E,交AC于点F,若
AB
=m
AE
AC
=n
AF
,则m+n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:在平面直角坐标系xOy中,任意两点A(x1,y1),B(x2,y2)之间的“直角距离”为d(A,B)=|x1-x2|+|y1-y2|;平面内一点C到一条直线l的“直角距离”为点C与直线l上的每一点的“直角距离”的最小值.已知点A(1,1),那么d(A,0)=
 
;若动点M(x,y)与点C(-1,0),D(1,0)的“直角距离”之和为4,则点M到直线x-2y+8=0的“直角距离”的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且AB⊥BF,则此双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(
x
-
2
x
6展开式中常数项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下面一组等式:
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,

根据上面等式猜测S2n-1=(2n-1)(an2+bn+c),则a•b•c=
 

查看答案和解析>>

同步练习册答案