精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=
a2
4
的切线,切点为E,延长FE交双曲线右支于点P,若E为线段PF的中点,则双曲线的离心率等于(  )
A、
10
B、
10
5
C、
10
2
D、
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:右焦点为F′,则PF′=a,PF=3a,EF=
3
2
a,利用勾股定理,即可求出双曲线的离心率.
解答: 解:由题意,设右焦点为F′,则PF′=a,PF=3a,
∴EF=
3
2
a,
c=
a2
4
+
9a2
4
=
10
2
a,
∴e=
c
a
=
10
2

故选:C.
点评:本题考查双曲线的离心率,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={-1,0},B={x∈R|x2=1},则集合A∩B等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8
2
的矩形,则该几何体的表面积是(  )
A、2 0+8 
2
B、2 4+8 
2
C、8
D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥D-ABC及其三视图中的主视图和下视图如图所示,则棱BD的长为
 
.三棱锥D-ABC的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线的向量参数方程为(x,y,z)=(5,0,3)+t(0,3,0),当t=
1
2
时,则对应直线上的点的坐标是(  )
A、(5,0,3)
B、(
5
2
,0,
3
2
C、(5,
3
2
,3)
D、(
5
2
3
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:
x681012
y2356
根据上表数据可得y与x之间的线性回归方程
y
=0.7x+
a
,据此模型估计,该机器使用年限为14年时的维修费用约为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中的最大面积是(  )
A、6
B、8
C、2
5
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设sinβ=sinαcos(α+β),α,β∈(0,
π
2
),α+β≠
π
2
,当tanβ取得最大值时tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积是(  )
A、
2
3
3
B、
2
3
3
+2π
C、2
3
D、2
3
+2π

查看答案和解析>>

同步练习册答案