分析 (1)根据极坐标和参数方程的定义进行求解即可.
(2)设A,B对应的参数分别为t1,t2,联立方程求出结合|MA|+|MB|=|t1|+|t2|进行计算即可.
解答 解:(1)直线l的斜率为$\sqrt{3}$,且与x轴交于点M(-1,0),∴直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t是参数);
由ρ2-4ρsinθ+3=0得x2+y2-4y+3=0⇒x2+(y-2)2=1;
(2)设A,B对应的参数分别为t1,t2,把直线的参数方程代入曲线方程得(-1-$\frac{1}{2}$t)2+($\frac{\sqrt{3}}{2}$t-2)2=1,
整理得t2-(2$\sqrt{3}$+1)t+4=0,
则t1+t2=2$\sqrt{3}$+1,t1t2=4,
∴t1>0,t2>0,
则|MA|+|MB|=|t1|+|t2|=|t1|+|t2|=2$\sqrt{3}$+1.
点评 本题主要考查参数方程,极坐标方程的应用,根据相应的转换公式进行化简是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a1d>0,dS4>0 | B. | a1d>0,dS4<0 | C. | a1d<0,dS4>0 | D. | a1d<0,dS4<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com