分析 由$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,得到2b=1+$\frac{2}{a}$-a,则2a+2b=2a+1+$\frac{2}{a}$-a=a+$\frac{2}{a}$+1,根据基本不等式即可求出答案.
解答 解:由$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,得到2b=1+$\frac{2}{a}$-a,
∴2a+2b=2a+1+$\frac{2}{a}$-a=a+$\frac{2}{a}$+1≥2$\sqrt{a•\frac{2}{a}}$+1=2$\sqrt{2}$+1,当且仅当a=$\sqrt{2}$时取等号,
∴a+b≥$\sqrt{2}$+$\frac{1}{2}$,
∴a+b的最小值是$\sqrt{2}$+$\frac{1}{2}$,
故答案为:$\sqrt{2}$+$\frac{1}{2}$.
点评 该题考查利用基本不等式求函数的最值,属基础题,注意适用条件:一正、二定、三相等.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{8}$ | B. | $\frac{1}{8}$ | C. | $\frac{63}{64}$ | D. | $\frac{31}{32}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{3}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{\sqrt{3}}{3}$x | D. | y=±$\frac{\sqrt{2}}{2}$x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com