精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx-m-2lnx(m∈R).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)≥0恒成立,证明:当0<x1<x2时,
f(x2)-f(x1)
2
>(1-
1
x1
)(x2-x1).
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)求函数的定义域和导数,根据函数单调性和导数之间的关系,即可讨论f(x)的单调性;
(Ⅱ)根据若f(x)≥0恒成立,讨论m的取值范围,结合函数的单调性证明不等式即可.
解答: 解:(Ⅰ)函数的定义域为(0,+∞),
函数的导数f′(x)=
mx-2
x

若m≤0,则f′(x)=
mx-2
x
<0,此时函数在(0,+∞)上递减,
若m>0,则由f′(x)>0,解得x>
2
m
,此时函数单调递增,
由f′(x)<0,解得0<x<
2
m
,此时函数单调递减,
故当m≤0,函数的单调递减区间为(0,+∞),
当m>0,函数的单调递减区间为(0,
2
m
),单调递增区间为(
2
m
,+∞).
(Ⅱ)由(Ⅰ)知m≤0,则f′(x)<0,函数f(x)在(0,+∞)上递减,
∵f(1)=0,∴f(x)≥0不恒成立,
若m>2,当x∈(
2
m
,1)时,f(x)单调递增,f(x)<f(1)=0,不合题意,
若0<m<2,当x∈(1,
2
m
)时,f(x)单调递减,f(x)<f(1)=0,不合题意,
若m=2,当x∈(0,1)上单调递减,f(x)在(1,+∞)单调递增,f(x)≥f(1)=0,符合题意,
故m=2时,且lnx≤x-1,(当且仅当x=1时取等号),
当0<x1<x2时,f(x2)-f(x1)=2[(x2-x1)-ln
x2
x1
],
∵ln
x2
x1
x2
x1
-1,∴f(x2)-f(x1)=2[(x2-x1)-ln
x2
x1
]>2[(x2-x1)-(
x2
x1
-1)]
=2(x2-x1)(1-
1
x1
),
因此
f(x2)-f(x1)
2
>(1-
1
x1
)(x2-x1)
点评:本题主要考查函数单调性和导数的关系,以及函数最值的应用,综合性较强,运算量较大,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2-2(-1)klnx(k∈N*),f′(x)表示f(x)的导函数.
(1)求函数y=f(x)的单调递增区间;
(2)当k为偶数时,若函数f(x)的图象恒在函数g(x)=(1-2a)x2的上方,求实数a的取值范围;
(3)当k为奇数时,设bn=
1
2
f′(n)-n,数列{bn}的前n项和为Sn,证明不等式(1+bn 
1
bn+1
>e对一切正整数n均成立,并比较S2014-2与ln2014的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一四棱锥P-ABCD的三视图如图所示,E是側棱PC上的动点.
(Ⅰ)求四棱锥P-ABCD的体积.
(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;
(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an+1=2nan-an2+2,a1=1,n∈N*,求a2,a3,a4及an

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCDS中,四边形ABCD为矩形,SD⊥AD,SD⊥AB,且AB=2AD=2,M,N分别为AB,CD中点.
(1)求异面直线SM,AN所成的角;
(2)若二面角A-SC-D大小为60°,求SD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(能力挑战题)如图,已知四棱锥S-ABCD的底面ABCD是菱形,∠BAD=60°,且SA=SB=SD=AB=2.
(1)求证:AB⊥SD.
(2)求S到底面ABCD的距离.
(3)设G为CD的中点,在线段SA上是否存在一点F,使得GF∥平面SBC?
(4)在线段AB上是否存在一点P,使得SP与平面SCD所成的角的正切值为
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a2a3a4=8,且a2+2,a3+4,a4+5构成公差不为零的等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求证:数列{Sn+
1
2
}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,若
S 2n
S n
恒为非零常数k,则称数列{an}为“和谐数列”.
(1)公差不为零的等差数列{bn}的首项为1,且为“和谐数列”,求k的值及数列{bn}的通项公式;
(2)正项数列{xn}的前n项和为Tn,且2Tn=xn(xn+1),(n∈N*),判断数列{xn}是否为“和谐数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanθ=
1
3
,则2sin2θ-sinθcosθ=
 

查看答案和解析>>

同步练习册答案