精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|2<x<4},B={x||x-1|≥2},则A∩B=(  )
A.(3,4)B.(2,3]C.[3,4)D.(2,3)

分析 求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由B中不等式变形得:x-1≤-2或x-1≥2,
解得:x≤-1或x≥3,即B=(-∞,-1]∪[3,+∞),
∵A=(2,4),
∴A∩B=[3,4),
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.命题p:函数f(x)=lg(ax2-2ax+1)的定义域为R,命题q:不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a≥0的解集为∅,若“p∧q”为假命题且“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{2ax+{a}^{2}-1}{{x}^{2}+1}$,其中a∈R,在x∈[0,+∞)上存在最大值和最小值,则a的取值范围是(-∞,-1]∪(0,1]..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由直线y=0,x=e,y=2x及曲线$y=\frac{2}{x}$所围成的封闭的图形的面积为(  )
A.3+2ln2B.3C.2e2-3D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-3≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,则z=2x+y的取值范围是[-5,11].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若点(t,27)在函数y=x3的图象上,则tan$\frac{tπ}{9}$的值为(  )
A.0B.1C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=-2x2+4x在区间[m,n]上的值域是[-6,2],则m+n的取值所组成的集合为(  )
A.[0,3]B.[0,4]C.[-1,3]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点M(a,b),满足a2+b2-4a+4b≤0,则a2+b2的取值范围是(  )
A.[2$\sqrt{2}$,4]B.[2$\sqrt{2}$,2$\sqrt{3}$]C.[8,12]D.[8,16]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=ln(x-1)上的点到直线x-y+4=0的最短距离是(  )
A.2B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案