精英家教网 > 高中数学 > 题目详情
4.求证:△ABC的三条高线交于一点.

分析 建立直角坐标系,写出各点的坐标,利用两点的连线的斜率公式求出AB的斜率,利用两直线垂直斜率互为倒数得到AB边上的高的斜率,利用点斜式求出AB边的高的方程,同理求出AC边上的高,两高线的方程联立得到高线的交点.

解答 证明:取△ABC最长一边BC所在的直线为X轴,经过A的高线为Y轴,设A、B、C的坐标分别为A(0,a)、B(b,0)、C(c,0),根据所选坐标系,如图,有a>0,b<0,c>0,AB的方程为$\frac{x}{b}+\frac{y}{a}=1$,其斜率为-$\frac{a}{b}$,AC的方程为$\frac{x}{c}+\frac{y}{a}=1$,其斜率为-$\frac{a}{c}$,
高线CE的方程为y=$\frac{b}{a}$(x-c)(1)高线BD的方程为y=$\frac{c}{a}$(x-b)(2).
解(1)、(2),得:(b-c)x=0
∵b-c≠0∴x=0
即高线CE、BD的交点的横坐标为0,也即交点在高线AO上.
因此,三条高线交于一点.

点评 本题考查通过建立直角坐标系将问题转化为代数问题、考查两点连线的斜率公式、考查两直线垂直斜率乘积为-1、考查两直线的交点坐标的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知不等式$\frac{x+2}{ax-1}$>0的解集为(-2,-1),则二项式(ax+$\frac{1}{{x}^{2}}$)6展开式的常数项是(  )
A.-15B.15C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}{x≥2}\\{y≤6}\\{4x-3y+4≤0}\end{array}\right.$,若不等式ax3y≤x4-y4恒成立,则实数a的取值范围是(-∞,-26$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知${A}_{n}^{2}$=132,则n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知相关变量x,y之间的一组数据如下表所示,回归直线$\widehaty=\widehatbx+\widehata$所表示的直线经过的定点为(1.5,5),
则mn=12.
x01n3
y8m24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某值日小组共有3名男生和2名女生,现安排这5名同学负责周一至周五擦黑板,每天1名同学,则这5 名同学值日日期恰好男生与女生间隔的概率为(  )
A.$\frac{1}{25}$B.$\frac{1}{10}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.二次函数f(x)的图象经过点(0,$\frac{3}{2}$),且f′(x)=-x-1,则不等式f(10x)>0的解集为(  )
A.(-3,1)B.(-lg3,0)C.($\frac{1}{1000}$,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y满足线性规划$\left\{\begin{array}{l}{x+y-4<0}\\{y-x>0}\\{2x+y-4>0}\end{array}\right.$,则x2+y2-6x-4y+14的取值范围是(  )
A.[2,14]B.(2,14)C.[2,$\sqrt{13}$+1]D.(2,$\sqrt{13}$+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sinα=$\frac{1}{3}$,α是第二象限角,求sin($\frac{π}{4}$+α)=$\frac{\sqrt{2}-4}{6}$.

查看答案和解析>>

同步练习册答案