| A. | 关于点($\frac{π}{8}$,0)对称 | B. | 关于直线x=$\frac{π}{8}$对称 | ||
| C. | 关于点(-$\frac{π}{4}$,0)对称 | D. | 关于直线x=-$\frac{π}{4}$对称 |
分析 由题意可得ω值,由2x一$\frac{π}{4}$=kπ可得对称中心,结合选项可得.
解答 解:∵函数f(x)=sin(2ωx一$\frac{π}{4}$)(ω>0)的最小正周期为π,
∴$\frac{2π}{2ω}$=π,解得ω=1,故(x)=sin(2x一$\frac{π}{4}$),
由2x一$\frac{π}{4}$=kπ可得x=$\frac{1}{2}$kπ+$\frac{π}{8}$,k∈Z,
∴函数f(x)的对称中心为($\frac{1}{2}$kπ+$\frac{π}{8}$,0),k∈Z,
经验证当k=0时,函数的一个对称中心为($\frac{π}{8}$,0),故A正确.
故选:A.
点评 本题考查正弦函数的图象,涉及正弦函数的对称性,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | ①③④ | B. | ①②④ | C. | ①③ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{10}$ | B. | $\frac{7}{24}$ | C. | $\frac{49}{60}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a≠b,则$\frac{a+b}{2}>\sqrt{ab}$ | B. | 若a>0,b>0,则$\frac{a+b}{2}≥\sqrt{ab}$ | ||
| C. | 若$\frac{a+b}{2}≥\sqrt{ab}$,则a>0,b>0 | D. | 若$\frac{a+b}{2}>\sqrt{ab}$,则a≠b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com