精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=
 
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,从而求得f(0)的值.
解答: 解:由函数的图象可得A=
2
1
4
•T=
12
-
π
3
=
1
4
ω
,求得ω=2.
再根据五点法作图可得2×
π
3
+φ=π,∴φ=
π
3
,故f(x)=
2
sin(2x+
π
3
),∴f(0)=
2
sin
π
3
=
6
2

故答案为:
6
2
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={x∈Z|-2≤x≤6},集合A={-1,0,1},B={x∈U|2x+3≤x2}.
求(Ⅰ)A∩B;
(Ⅱ)∁U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤4},B={x|m-3≤x≤m}.
(1)若实数m=5,求A∩B;
(2)若A⊆(∁RB),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c.已知a+
2
c=2b,sinB=
2
sinC,则cosA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函数f(x)=ln2x+lnx-a有零点;
③?m∈R,使f(x)=(m-1)•xm2-4m+3是幂函数,且在(0,+∞)上递减;
④若函数f(x)=|2x-1|,则?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
其中是假命题的
 
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(x+φ)+cos(x+φ)(|φ|<
π
2
)为偶函数,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

25
9
0.5+(
27
64
 -
2
3
+(0.1)-2-
31
9
(π)0+lg2+lg5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

A={(x,y)|(x-1)2+(y-2)2}≤
5
4
},B={(x,y)||x-1|+2|y-2|≤a},若A⊆B,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足2a+b+c=0,a2+b2+c2=1,则a的最小值是
 

查看答案和解析>>

同步练习册答案