精英家教网 > 高中数学 > 题目详情
13.已知如图中的所有圆的半径都等于3,且该图形为某一空间几何体的三视图,则这个空间几何体的表面积为36π.

分析 由三视图得该几何体是一个半径为3的球去掉$\frac{1}{4}$球体后剩余部分的几何体,由此能求出这个空间几何体的表面积.

解答 解:由三视图得该几何体是一个半径为3的球去掉$\frac{1}{4}$球体后剩余部分的几何体,
∴这个空间几何体的表面积为:
S=$\frac{3}{4}×4π×{3}^{2}$+4×($\frac{1}{4}$×π×32)=36π.
故答案为:36π.

点评 本题考查考查空间几何体的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\sqrt{x+3}+{log_2}({9-x})$的定义域是(  )
A.{x|x>9}B.{x|-3<x<9}C.{x|x>-3}D.{x|-3≤x<9}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设an=-3n2+15n-18,则数列{an}中的最大项的值是(  )
A.$\frac{16}{3}$B.$\frac{13}{3}$C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{1}{2}$,若$\overrightarrow{a}$$-\overrightarrow{c}$和$\overrightarrow{b}$-$\overrightarrow{a}$夹角为120°,则|$\overrightarrow{c}$|的最大值为(  )
A.$\sqrt{3}$B.2C.$\frac{2}{3}$$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,A,B,C是一个无盖的正方体盒子展开后的平面图上的散点,则在正方体盒子中∠ABC=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是正方体的平面展开图.关于这个正方体,有以下判断:
①ED与NF所成的角为60°
②CN∥平面AFB
③BM∥DE
④平面BDE∥平面NCF
其中正确判断的序号是(  )
A.①③B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数f′(x),满足关系式f(x)=x2+2xf′(2)-lnx,则f(1)的值为(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P(1+cosα,sinα),参数α∈[0,2π),在以O极点,x轴的非负半轴为极轴的极坐标系中,点Q在曲线C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求点P的轨迹方程与曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,6个点可以连15条弦,请你探究其中规律,如果圆周上有10个点.则可以连45条弦.

查看答案和解析>>

同步练习册答案