精英家教网 > 高中数学 > 题目详情
18.如图是正方体的平面展开图.关于这个正方体,有以下判断:
①ED与NF所成的角为60°
②CN∥平面AFB
③BM∥DE
④平面BDE∥平面NCF
其中正确判断的序号是(  )
A.①③B.②③C.①②④D.②③④

分析 在①中,由NF∥BD,知∠EDB是ED与NF所成角(或所成角的补角),由△EDB是等边三角形,得ED与NF所成的角为60°;在②中,由CN∥EB,得CN∥平面AFB;在③中,由BM∥AN,DE与AN相交,得BM与DE不平行;在④中,由NF∥BD,CF∥DE,得平面BDE∥平面NCF.

解答 解:把正方体的平面展开图还原成正方体ABCD-EFMN,
在①中,∵NF∥BD,∴∠EDB是ED与NF所成角(或所成角的补角),
∵△EDB是等边三角形,∴∠EDB=60°,
∴ED与NF所成的角为60°,故①正确;
在②中,∵CN∥EB,CN?平面AFB,EB?平面AFB,
∴CN∥平面AFB,故②正确;
在③中,∵BM∥AN,DE与AN相交,∴BM与DE不平行,故③错误;
在④中,∵NF∥BD,CF∥DE,NF∩CF=F,DE∩DB=D,
NF、FC?平面CNF,DE、DB?平面BDE,
∴平面BDE∥平面NCF,故④正确.
故选:C.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.△ABC的三内角A、B、C满足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设抛物线y=$\frac{1}{2}$x2的焦点为F,准线为l,过点F作一直线与抛物线交于A,B两点,再分别过点A,B作抛物线的切线,这两条切线的交点记为P.
(1)证明:直线PA与PB相互垂直,且点P在准线l上;
(2)是否存在常数λ,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方体ABCD-A1B1C1D1的棱长为1,E是棱D1C1的中点,点F在正方体内部或正方体的表面上,若EF∥平面A1BC1,则动点F的轨迹所形成的区域面积是(  )
A.$\frac{9}{8}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知如图中的所有圆的半径都等于3,且该图形为某一空间几何体的三视图,则这个空间几何体的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=6,BC=8,若此三棱柱外接球的半径为13,则该三棱柱的表面积为(  )
A.624B.576C.672D.720

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x+$\frac{1}{2}$)为奇函数,g(x)=f(x)+1,若an=g($\frac{n}{2017}$),则数列{an}的前2016项和为(  )
A.2017B.2016C.2015D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若半径为2 的球O中有一内接圆柱,当圆柱的侧面积为8π时,圆柱的体积为4$\sqrt{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,倾斜角为α的直线l过点M(-2,-4),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.
(1)写出直线l的参数方程(α为常数)和曲线C的直角坐标方程;
(2)若直线l与C交于A、B两点,且|MA|•|MB|=40,求倾斜角α的值.

查看答案和解析>>

同步练习册答案