精英家教网 > 高中数学 > 题目详情
7.若半径为2 的球O中有一内接圆柱,当圆柱的侧面积为8π时,圆柱的体积为4$\sqrt{2}π$.

分析 设半径为R=2 的球O中的内接圆柱的高为h,底面半径为r,由圆柱的侧面积为8π,列出方程组,求出r=$\sqrt{2}$,h=2$\sqrt{2}$,由此能求出圆柱的体积.

解答 解:如图,设半径为R=2 的球O中的内接圆柱的高为h,底面半径为r,
∵圆柱的侧面积为8π,
∴$\left\{\begin{array}{l}{2πrh=8π}\\{{r}^{2}+(\frac{1}{2}h)^{2}=4}\end{array}\right.$,解得r=$\sqrt{2}$,h=2$\sqrt{2}$,
∴圆柱的体积V=πr2h=$π×(\sqrt{2})^{2}×2\sqrt{2}$=4$\sqrt{2}π$.
故答案为:4$\sqrt{2}π$.

点评 本题考查圆柱的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若x、y满足约束条件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,则x2+y2的最小值为(  )
A.$\sqrt{2}$B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是正方体的平面展开图.关于这个正方体,有以下判断:
①ED与NF所成的角为60°
②CN∥平面AFB
③BM∥DE
④平面BDE∥平面NCF
其中正确判断的序号是(  )
A.①③B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列各组数,可以是钝角三角形的长的是(  )
A.6,7,8B.7,8,10C.2,6,7D.5,12,13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P(1+cosα,sinα),参数α∈[0,2π),在以O极点,x轴的非负半轴为极轴的极坐标系中,点Q在曲线C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求点P的轨迹方程与曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某大学中文系一、二、三、四年级的学生数之比为5:2:3:4,要用分层抽样的方法从该系所有本科生中抽取一个容量为280的样本,则应抽取二年级的学生为(  )
A.40人B.60人C.80人D.20人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{6}}}{3}$,直线y=kx与椭圆相交于 A、B 两点,|AF2|+|BF2|=2$\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设M,N 分别为线段AF2,BF2的中点,原点O在以MN为直径的圆内,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线的倾斜角的范围是a∈[$\frac{π}{4}$,$\frac{π}{2}$],则此直线的斜率k的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.面对全球范围内日益严峻的能源形势与环保压力,环保与低碳成为今后汽车发展的一大趋势,越来越多的消费者对新能源汽车表示出更多的关注,某研究机构从汽车市场上随机抽取N辆纯电动汽车调查其续航里程(单次充电后能行驶的最大里程),被调查汽车的续航里程全部介于100公里和450公里之间,根据调查数据形成了如图所示频率分布表及频率分布直方图.
频率分布表
分组  频数 频率
[100,150) 1 0.05
[150,200) 3 0.15
[200,250) x 0.1
[250,300) 6 0.3
[300,350) 40.2 
[350,400) 3 y
[400,450] 1 0.05
 合计 N 1
(1)试确定频率分布表中x,y,N的值,并补全频率分布直方图;
(2)若从续航里程在[200,250)及[350,400)的车辆中随机抽取2辆车,求两辆车续航里程都在[350,400)的概率.

查看答案和解析>>

同步练习册答案