精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1(侧棱和底面垂直的棱柱)中,AB⊥BC,AB=BC=AA1=3,线段AC、A1B上分别有一点E、F,且满足2AE=EC,2BF=FA1
(1)求证:平面A1BC⊥侧面A1ABB1
(2)求二面角F-BE-C的平面角的余弦值.
考点:用空间向量求平面间的夹角,平面与平面垂直的判定,与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间向量及应用
分析:(1)由BC⊥AB,BC⊥AA1,推导出BC⊥面A1ABB1,由此能够证明面A1BC⊥面A1ABB1
(2)以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系,利用向量法能求出二面角F-BE-C的平面角的余弦值.
解答: (1)证明:在直三棱柱ABC-A1B1C1中,
∵BC⊥AB,BC⊥AA1
∴BC⊥面A1ABB1
又∵BC?面A1BC,
∴面A1BC⊥面A1ABB1.(4分)
(2)解:由(1)知,以点B为坐标原点,
以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,
建立如图所示的空间直角坐标系.
∵AB=BC=AA1=3,
∴B(0,0,0),A(0,3,0),C(3,0,0),A1(0,3,3),
又∵线段AC、A1B上分别有一点E、F,满足2AE=EC,2BF=FA1
∴E(1,2,0),F(0,1,1),(6分)
BE
=(1,2,0),
BF
=(0,1,1),
设平面BEF的法向量
n
=(x,y,z)
,则
n
BE
=0
n
BF
=0

x+2y=0
y+z=0
,∴面BEF的法向量
n
=(2,-1,1)
,(8分)
面BEC的法向量
m
=(0,0,-1),
设所求二面角平面角为θ,
则cosθ=-|cos<
m
n
>|=-|
-1
6
|=-
6
6

∴二面角F-BE-C的平面角的余弦值为-
6
6
.(12分)
点评:本题考查平面与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个结论:
①偶函数的图象一定与Y轴相交;
②奇函数的图象一定通过原点;
③f(x)=0(x∈R)既是奇函数,又是偶函数;
④偶函数的图象关于y轴对称.
其中正确的是
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=AC=BC=2,则
AB
BC
=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,错误的个数是(  )
①一条直线与一个点就能确定一个平面   
②若直线a∥b,b?平面α,则a∥α
③若函数y=f(x)定义域内存在x=x0满足f'(x0)=0,则x=x0必定是y=f(x)的极值点
④函数的极大值就是最大值.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E-AM-D的余弦值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的
中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,试
确定点M的位置,使二面角M-BQ-C大小为60°,并求出
PM
PC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+1+bx+1
ax+bx
,a>0,b>0,且a≠1,b≠1.
(1)判断函数f(x)的单调性;
(2)当a≠b时,利用(1)中的结论,证明不等式:
2
1
a
+
1
b
ab
a+b
2
a2+b2
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P-BCG的体积为
8
3

(1)求二面角P-BC-D的正切值;
(2)求直线DP到平面PBG所成角的正弦值;
(3)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案