精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.
考点:用空间向量求平面间的夹角,与二面角有关的立体几何综合题
专题:等差数列与等比数列,空间向量及应用
分析:(1)以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立坐标系,利用向量法能求出a的值.
(2)分别求出平面FD1D的一个法向量为
m
和平面EFD1的一个法向量
n
,利用向量法能求出二面角E-FD1-D的余弦值.
解答: 解:(1)如图,以D为坐标原点,DA所在直线为x轴,
DC所在直线为y轴,DD1所在直线为z轴,建立坐标系.
∵AB=AD=2,AA1=a,E,F分别为AD,CD的中点,
∴A(2,0,0),D1(0,0,a),
C1(0,2,a),F(0,1,0).
AC1
=(-2,2,a),
D1F
=(0,1,-a).…(2分)
∵AC1⊥D1F,∴
AC1
D1F
=0,即(-2,2,a)•(0,1,-a)=0.
∴2-a2=0,又a>0,解得a=
2
.…(5分)
(2)平面FD1D的一个法向量为
m
=(1,0,0).
设平面EFD1的一个法向量为
n
=(x,y,z),
∵E(1,0,0),a=2,
EF
=(-1,1,0),
D1F
=(0,1,-2).
n
EF
n
D1F
,得-x+y=0且y-2z=0,
解得x=y=2z.
故平面EFD1的一个法向量为
n
=(2,2,1).…(8分)
∵cos<
m
n
>=
m
n
|
m
||
n
|

=
(1,0,0)•(2,2,1)
1×3
=
2
3

且二面角E-FD1-D的大小为锐角,
∴二面角E-FD1-D的余弦值为
2
3
.…(10分)
点评:本题考查线段长的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
lim
n→∞
(1-qn)=1,则实数q的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某年级女生的身高情况,从中抽出20名进行测量,结果如下:(单位:cm)
149 159 142 160 156 163 145  150 148 151
156 144 148 149  153 143 168 168 152 155
在列样本频率分布表的过程中,如果设组距为4cm,那么组数为(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

m是一条直线,α,β是两个不同的平面,以下命题正确的是(  )
A、若m∥α,α∥β,则m∥β
B、若m∥α,m∥β,则α∥β
C、若m∥α,α⊥β,则m⊥β
D、若m∥α,m⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,AC,BD相交于点O,PD=
2
AB
,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当E为PB的中点时,求AE与平面PDB所成角的大小;
(3)当PO⊥AE时,求
PE
EB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1(侧棱和底面垂直的棱柱)中,AB⊥BC,AB=BC=AA1=3,线段AC、A1B上分别有一点E、F,且满足2AE=EC,2BF=FA1
(1)求证:平面A1BC⊥侧面A1ABB1
(2)求二面角F-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P为线段AB的垂直平分线上任意一点,O为平面内的任意一点,设
OA
=
a
OB
=
b
OP
=
p
,求证:
p
•(
a
-
b
)=
1
2
(|
a
|2-|
b
|2)

查看答案和解析>>

科目:高中数学 来源: 题型:

4个不同的玩具和3件不同的儿童服装排成一排,陈列在商店的柜台上,其中玩具与玩具放在一起,服装和服装放在一起,且某件服装不放在中间的排法有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,Sn为其前n项和,若S7=7,S15=75,
(1)求数列{an}的首项和公差;
(2)求数列{
Sn
n
}
的前n项和Tn

查看答案和解析>>

同步练习册答案