精英家教网 > 高中数学 > 题目详情
13.在数学研究性学习活动中,某小组要测量河对面A和B两个建筑物的距离,在河一侧取C、D两点,如图所示,测得CD=a,并且在C、D两点分别测得∠BAC=α,∠ACD=β,∠CDB=γ,∠BDA=?.
(1)试求A、C之间的距离及B、C之间的距离.
(2)若a=50米,α=75°,β=30°,γ=45°,?=75°,求河对岸建筑物A、B之间的距离?

分析 (1)在△ADC、△DBC中,分别用正弦定理,即可求解;
(2)利用正弦定理,求出AC,BC,在△ABC中,由余弦定理得AB.

解答 解:(1)在△ADC中,∠ADC=?+γ,∠DAC=180°-(β+?+γ),CD=a.
由正弦定理,得AC=$\frac{asin(?+γ)}{sin(β+?+γ)}$.    …(3分)
在△DBC中,∠BDC=γ,∠DBC=180°-(α+β+γ),CD=a,.
由正弦定理,得BC=$\frac{asinγ}{sin(α+β+γ)}$   …(6分)
(2)a=50米,α=75°,β=30°,γ=45°,?=75°时,
AC=$\frac{50×sin(75°+45°)}{sin(30°+75°+45°)}$=50$\sqrt{3}$,…(8分)
BC=$\frac{50sin45°}{sin(75°+30°+45°)}$=50$\sqrt{2}$,…(9分)
在△ABC中,由余弦定理得AB=$\sqrt{7500+5000-2×50\sqrt{3}×50\sqrt{2}×\frac{\sqrt{6}-\sqrt{2}}{4}}$=25($\sqrt{6}$+$\sqrt{2}$),…(10分).
所以,河对岸建筑物A、B的距离为25($\sqrt{6}$+$\sqrt{2}$)米. …(13分)

点评 本题考查正弦、余弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知在△ABC中,∠A=60°,a=1,则b+c的取值范围为(1,2]..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,M是椭圆C上一点,△MF1F2的周长为4+2$\sqrt{3}$,过椭圆上顶点与右顶点的直线与直线2x-y-6=0垂直.
(1)求椭圆C的方程;
(2)若直线l交椭圆C于A,B两点,以AB为直径的圆过原点,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)+b图象的一部分如图所示,则f(x)的解析式为(  )
A.y=sin2x-2B.y=2cos3x-1C.y=sin(2x-$\frac{π}{5}$)+1D.y=1-sin(2x-$\frac{π}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.1911与1183的最大公约数是91.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.横截面为矩形的横梁的强度同它的断面高的平方与宽的积成正比,要将直径为d的圆木锯成强度最大的横梁,断面的宽的和高度应是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若f(x)=$\left\{\begin{array}{l}\frac{1}{a}-\frac{1}{x},\;\;0<\;x≤4\\ lnx-1,\;\;\;\;\;\;x>4\end{array}$在[$\frac{1}{2}$,2]上的最大值为2.
(Ⅰ)求a的值;
(Ⅱ)求不等式f(x)<1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某多面体的三视图如图所示,则该多面体的各条棱中,最长的棱的长度为(  )
A.2$\sqrt{5}$B.2$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-ax+x-a>0},B={x|$\frac{1}{x-a-1}$≤-1},a∈R.
(1)求A和B;
(2)是否存在实数a使得A∪B=R,若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案