精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2sinx,cosx),
n
=(
3
cosx,2cosx),定义函数f(x)=
.
m
n
-1.
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调区间、对称轴与对称中心.
考点:平面向量数量积的运算,两角和与差的正弦函数,三角函数的周期性及其求法,正弦函数的单调性
专题:三角函数的图像与性质,平面向量及应用
分析:(1)计算
m
n
的值,得出fx)的解析式,从而求出函数最小正周期;
(2)根据三角函数的图象与性质,求出f(x)的单调增区间、减区间以及对称轴与对称中心. 
解答: 解:(1)∵
m
n
=2
3
sinxcosx+2cos2x  
=
3
sin2x+cos2x+1
=2(
3
2
sin2x+
1
2
cos2x)+1
=2sin(2x+
π
6
)+1,
fx)=
m
n
-1=2sin(2x+
π
6
),
∴函数的最小正周期是T=
2

(2)∵f(x)=2sin(2x+
π
6
),
令2kπ-
π
2
<2x+
π
6
<2kπ+
π
2
 (k∈Z),
则2kπ-
3
<2x<2kπ+
π
3
 (k∈Z),
∴kπ-
π
3
<x<kπ+
π
6
 (k∈Z)
∴f(x)的单调递增区间是(kπ-
π
3
+
π
6
)(kZ)
同理可得:fx)的单调递减区间是(+
π
6
+
3
)(kZ),
由2x+
π
6
=
π
2
+kπ (k∈Z),
得x=
2
+
π
6
(k∈Z),
∴fx)的对称轴为x=
2
+
π
6
,(kZ),
由2x+
π
6
=kπ (k∈Z),
得x=
2
-
π
12
(k∈Z),
fx)的对称中心为 (
2
-
π
12
,0)(k∈Z).
点评:本题考查了平面向量的应用问题,也考查了三角函数的图象与性质的应用问题,是综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“φ=0”是“函数f(x)=cos(x+φ)为奇函数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,椭圆的上顶点和两焦点连线构成等边三角形且面积为
3

(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)设M为椭圆Γ上一点,以M为圆心,MF为半径作圆M,若圆M与y轴相切,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中的内角A、B、C所对的边分别为a、b、c,若
m
=(cosB,cosC),
n
=(2a+c,b),且
m
n

(Ⅰ)求角B的大小;
(Ⅱ)求函数y=sin2A+sin2C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+log 
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)lnx.
(Ⅰ)判断f(x)在(0,+∞)的单调性并证明你的结论;
(Ⅱ)设g(x)=
f(x)
a(1-x)
(a≠0),若对一切的x∈(0,1),不等式g(x)<-2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx-
m-1
x
-lnx,g(x)=
1
sinθ•x
+lnx在[1,+∞]上为增函数,且θ∈(0,π),求解下列各题:
(1)求θ的取值范围;
(2)若h(x)=f(x)-g(x)在(1,+∞)上为单调增函数,求m的取值范围;
(3)设φ(x)=
2e
x
,若在[1,e]上至少存在一个x0,f(x0)-g(x0)>φ(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有5张卡片,上面分别记着数字1,1,2,2,2,每张卡片从外观上看毫无差异,现从盒子中有放回的任意取2张卡片,记下上面数字分别为X和Y,两次所得数字之和记为M,即M=X+Y
(1)求随机变量M的分布列和数学期望
(2)若规定所得数字之和为3即可获得奖品,先甲乙两人各自玩了一次上面的游戏,试求两人之中至少有一人获得奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,过圆x2+y2=1上的动点M作y轴的垂线且交y轴于点N,点Q满足:
OQ
=2
OM
-
ON

(1)求点Q的轨迹方程C;
(2)设曲线C分别与x,y轴正半轴交于A,B两点,直线y=kx(k>0)与曲线C交于E,F两点,与线段AB交于点D,
ED
=6
DF
,求k值.

查看答案和解析>>

同步练习册答案