9£®ÒÑÖª$\overrightarrow{a}$=£¨sin¦Øx+$\sqrt{3}$cos¦Øx£¬2cos¦Øx£©£¬$\overrightarrow{b}$=£¨sin¦Øx£¬cos¦Øx£©£¬Éèf£¨x£©=$\overrightarrow{a}•\overrightarrow{b}$£¬ÆäÖÐf£¨¦Á£©=$\frac{3}{2}$£¬f£¨¦Â£©=$\frac{1}{2}$£¬ÇÒ|¦Á-¦Â|µÄ×îСֵΪ$\frac{¦Ð}{4}$£®
£¨1£©Ç󦨵ÄÖµºÍº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÉèA£¬BΪÈý½ÇÐεÄÄڽǣ¬ÇÒf£¨A£©=2£¬Çóf£¨B£©µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㻯¼òº¯Êý½âÎöʽ¿ÉµÃf£¨x£©=sin£¨2¦Øx+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$£¬ÓÉÌâÒâ¿É½âµÃ¦Á=$\frac{{k}_{1}¦Ð-\frac{¦Ð}{6}}{2¦Ø}$£¬k1¡ÊZ£¬¦Â=$\frac{2{k}_{2}-\frac{2¦Ð}{3}}{2¦Ø}$£¬k2¡ÊZ£¬ÓÉ|¦Á-¦Â|µÄ×îСֵΪ$\frac{¦Ð}{4}$£®¿É½âµÃ£º|¦Ø|¡Ü|2k1-4k2|+$\frac{1}{2}$£¬k1¡ÊZ£¬k2¡ÊZ£¬´Ó¶ø¿ÉÇ󦨵ÄÖµ£®ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Üx+$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ¿É½âµÃº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£®
£¨2£©ÓÉÌâÒâµÃsin£¨A+$\frac{¦Ð}{6}$£©=$\frac{1}{2}$£¬½áºÏ$\frac{¦Ð}{6}$£¼A+$\frac{¦Ð}{6}$£¼$\frac{7¦Ð}{6}$£¬¿É½âµÃA£®¿ÉµÃ0$£¼B£¼\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£¼B+$\frac{¦Ð}{6}$£¼$\frac{¦Ð}{2}$£¬ÓÉÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʼ´¿ÉÇóµÃf£¨B£©µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßf£¨x£©=$\overrightarrow{a}•\overrightarrow{b}$=sin2¦Øx+$\sqrt{3}$cos¦Øxsin¦Øx+2cos2¦Øx=$\frac{\sqrt{3}}{2}$sin2¦Øx+$\frac{1}{2}$cos2¦Øx+$\frac{3}{2}$=sin£¨2¦Øx+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$£¬
¡ßf£¨¦Á£©=sin£¨2¦Ø¦Á+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$=$\frac{3}{2}$£¬¿ÉµÃ2¦Ø¦Á+$\frac{¦Ð}{6}$=k1¦Ð£¬k1¡ÊZ£¬½âµÃ£º¦Á=$\frac{{k}_{1}¦Ð-\frac{¦Ð}{6}}{2¦Ø}$£¬k1¡ÊZ£¬
f£¨¦Â£©=sin£¨2¦Ø¦Â+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$=$\frac{1}{2}$£¬¿ÉµÃ2¦Ø¦Â+$\frac{¦Ð}{6}$=2k2¦Ð$-\frac{¦Ð}{2}$£¬k2¡ÊZ£¬½âµÃ£º¦Â=$\frac{2{k}_{2}-\frac{2¦Ð}{3}}{2¦Ø}$£¬k2¡ÊZ£¬
¡ß|¦Á-¦Â|µÄ×îСֵΪ$\frac{¦Ð}{4}$£®
¡à|¦Á-¦Â|=|$\frac{{k}_{1}¦Ð-\frac{¦Ð}{6}}{2¦Ø}$-$\frac{2{k}_{2}-\frac{2¦Ð}{3}}{2¦Ø}$|=|$\frac{¦Ð£¨{k}_{1}-2{k}_{2}+\frac{1}{2}£©}{2¦Ø}$|¡Ý$\frac{¦Ð}{4}$£®k1¡ÊZ£¬k2¡ÊZ£¬
¿É½âµÃ£º|¦Ø|¡Ü|2k1-4k2|+$\frac{1}{2}$£¬k1¡ÊZ£¬k2¡ÊZ£¬
È¡k1=2£®k2=1¿É½âµÃ¦Ø=1£®
¡àf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$£¬ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x+$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ¿É½âµÃº¯ÊýµÄµ¥µ÷µÝÔöÇø¼äΪ£º[k$¦Ð-\frac{¦Ð}{3}$£¬k¦Ð+$\frac{¦Ð}{6}$]£¬k¡ÊZ£®
£¨2£©¡ßf£¨A£©=sin£¨2A+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$=2£¬¿ÉµÃsin£¨2A+$\frac{¦Ð}{6}$£©=$\frac{1}{2}$£¬ÓÉ$\frac{¦Ð}{6}$£¼2A+$\frac{¦Ð}{6}$£¼$\frac{13¦Ð}{6}$£¬¿É½âµÃ£ºA=$\frac{¦Ð}{3}$£®
¡à0$£¼B£¼\frac{2¦Ð}{3}$£¬$\frac{¦Ð}{6}$£¼B+$\frac{¦Ð}{6}$£¼$\frac{5¦Ð}{6}$£¬$\frac{1}{2}$£¼sin£¨B+$\frac{¦Ð}{6}$£©£¼1£¬
¡àf£¨B£©=sin£¨B+$\frac{¦Ð}{6}$£©$+\frac{3}{2}$¡Ê£¨2£¬$\frac{5}{2}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËѧÉú×ۺϷÖÎöÎÊÌâºÍ»ù±¾µÄÔËËãÄÜÁ¦£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬Éè½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôb=5£¬B=$\frac{¦Ð}{4}$£¬tanA=2£¬Ôòa=2$\sqrt{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨$\frac{1}{x}$£©£¬µ±x¡Ê[1£¬3]ʱ£¬f£¨x£©=lnx£¬ÈôÔÚÇø¼ä[$\frac{1}{3}$£¬3]ÄÚ£¬º¯Êýg£¨x£©=f£¨x£©-axÓëxÖáÓÐÈý¸ö²»Í¬µÄ½»µã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[$\frac{ln3}{3}$£¬$\frac{1}{e}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x+y¡Ü2\\ x-y¡Ü2\\ x¡Ý1\end{array}\right.$£¬Èôx+2y¡Ýaºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§Îªa¡Ü-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Éè$\overrightarrow{a}$=£¨x£¬2y£¬3£©£¬$\overrightarrow{b}$=£¨1£¬1£¬6£©£¬ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôòx+yµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{3}{4}$C£®$\frac{3}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬µãFÔÚ¡÷OCDËùÔÚµÄÇøÓòÄÚ£¨º¬±ß½ç£©Ô˶¯£¬$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AC}$=$\frac{1}{3}\overrightarrow{AD}$£¬ÇÒ$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$£¬µ±x=-$\frac{1}{3}$ʱ£¬ÔòyµÄȡֵ·¶Î§ÊÇ[$\frac{1}{2}$£¬$\frac{2}{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª0¡ã£¼¦Á£¼90¡ã£¬0¡ã£¼¦Á+¦Â£¼90¡ã£¬3sin¦Â=sin£¨2¦Á+¦Â£©£¬Ôòtan¦ÂµÄ×î´óÖµÊÇ$\frac{\sqrt{2}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}{bn}£¬¶ÔÈκÎÕýÕûÊýn£¬¶¼ÓÐa1b1+a2b2+a3b3+¡­+an-1•bn-1+an•bn=£¨n-1£©•2n+1
£¨1£©ÈôÊýÁÐ{bn}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}ͨÏʽ£»
£¨2£©ÇóÖ¤£º$\frac{1}{{a}_{1}•{b}_{1}}$+$\frac{1}{{a}_{2}•{b}_{2}}$+$\frac{1}{{a}_{3}•{b}_{3}}$+¡­+$\frac{1}{{a}_{n}•{b}_{n}}$£¼$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Çóº¯Êýy=$\frac{x+5}{x-2}$µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸