精英家教网 > 高中数学 > 题目详情
3.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为$\frac{5}{3}$.

分析 直接利用正态分布的对称性,列出方程求解即可.

解答 解:由题意可知随机变量ξ~N(2,4),满足正态分布,对称轴为μ=2,
P(ξ>a+2)=P(ξ<2a-3),
则:a+2+2a-3=4,解得a=$\frac{5}{3}$.
故答案为$\frac{5}{3}$.

点评 本题考查正态分布的基本性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=(x-1)ex-ax2,若y=f(cosx)在x∈[0,π]上有且仅有两个不同的零点,则实数a的取值范围为a≤-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率e=$\frac{{\sqrt{2}}}{2}$,左顶点为A(-2,0).
(1)求椭圆E的方程;
(2)已知O为坐标原点,B,C是椭圆E上的两点,连接AB的直线平行OC交y轴于点D,证明:|AB|$,\;\;\sqrt{2}|{OC}|\;\;,\;\;|{AD}$|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=xlnx-\frac{a}{2}{x^2}$,直线l:y=(k-2)x-k+1,且k∈Z.
(1)若$?{x_0}∈[{e,{e^2}}]$,使得f(x0)>0成立,求实数a的取值范围;
(2)设a=0,当x>1时,函数f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,它的表面积为(  )
A.66πB.51πC.48πD.33π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段只保留其中的2个商业广告,新增播一个商业广告与两个不同的公益宣传广告,且要求两个公益宣传广告既不能连续播放也不能在首尾播放,则不同的播放顺序共有(  )
A.60种B.120种C.144种D.300种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知m,n是两条不同的直线,α,β是两个不重合的平面.命题p:若α∩β=m,m⊥n,则n⊥α;命题q:若m∥α,m?β,α∩β=n,则m∥n.那么下列命题中的真命题是(  )
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.记关于x的不等式$1-\frac{a}{x}<0$的解集为P,不等式|x+2|<3的解集为Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题中为真命题的是③④.
①若两个平面α∥β,a?α,b?β,则a∥b;
②若两个平面α∥β,a?α,b?β,则a与b一定异面;
③若两个平面α∥β,a?α,b?β,则a与b一定不相交;
④若两个平面α∥β,a?α,b?β,则a与b共面或异面;
⑤若两个平面α∥β,a?α,则a与β一定相交.

查看答案和解析>>

同步练习册答案