精英家教网 > 高中数学 > 题目详情
15.若a,b,c均为实数,且ab<0,则下列不等式正确的是(  )
A.|a+b|>|a-b|B.|a|+|b|>|a-b|C.|a-c|≤|a-b|+|b-c|D.|a-b|<|a|-|b|

分析 不妨令a=2,b=-1,代入各个选项检验可得A、B、D不成立,从而得出结论.

解答 解:不妨令a=2,b=-1,代入各个选项检验可得A、B、D不成立,
由绝对值三角不等式,可得|a-c|=|(a-b)+(b-c|≤|a-b|+|b-c|,故C成立,
故选:C.

点评 本题主要考查绝对值不等式的应用,绝对值三角不等式;通过举反例来说明某个结论不成立,是一种简单有效的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$,如果目标函数z=x-y的最小值为-2,则实数m的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知I为△ABC所在平面上的一点,且AB=c,AC=b,BC=a.若a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$,则I一定是△ABC的(  )
A.垂心B.内心C.外心D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过两分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知F1,F2分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,B是椭圆的上顶点,BF2的延长线交椭圆于点A,过点A垂直于x轴的直线交椭圆于点C.
(1)若点C坐标为$(\frac{4}{3},\frac{1}{3})$,且|BF2|=$\sqrt{2}$,求椭圆的方程;
(2)若F1C⊥AB,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b∈R,则a2(a-b)>0是a>b的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不必要也不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.判断下列函数的奇偶性.
(1)f(x)=x2-x3
(2)f(x)=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$
(3)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,内角A,B,C所对的边长分别为a,b,c.若a=2bcosA,B=$\frac{π}{3}$,c=1,则△ABC的面积等于(  )
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q.若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{13}}{5}$C.$\frac{\sqrt{7}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案