精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=1$,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则向量$\overrightarrow a$,$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

分析 由条件利用两个向量垂直的性质,两个向量的数量积的定义,求得向量$\overrightarrow a$,$\overrightarrow b$的夹角的余弦值,可得向量$\overrightarrow a$,$\overrightarrow b$的夹角.

解答 解:设向量$\overrightarrow a$,$\overrightarrow b$的夹角为θ,θ∈[0,π],
∵向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=1$,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•\overrightarrow{b}$=1+$\overrightarrow{a}•\overrightarrow{b}$=0,即$\overrightarrow{a}•\overrightarrow{b}$=-1.
再根据(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=-2+${\overrightarrow{b}}^{2}$=0,可得${\overrightarrow{b}}^{2}$=2,|$\overrightarrow{b}$|=$\sqrt{2}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=1•$\sqrt{2}$•cosθ=-1,∴cosθ=-$\frac{\sqrt{2}}{2}$,θ=$\frac{3π}{4}$,
故选:D.

点评 本题主要考查两个向量垂直的性质,两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sinα-2cosα=0,求
(1)$\frac{2sinα+cosα}{sinα-3cosα}$;
(2)2sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(1,cosθ),-$\frac{π}{2}$<θ$<\frac{π}{2}$.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanθ的值.
(Ⅱ)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b是两条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A.若a∥b,a∥α,则b∥αB.若α⊥β,a∥α,则a⊥βC.若α⊥β,a⊥β,则a∥αD.若α∥β,m⊥α,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$e=\frac{{\sqrt{2}}}{2}$,且过点A(2,1).
(1)求椭圆E的方程;
(2)过点B(3,0)且斜率大于0的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,求|BM|+|BN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD的平行四边形,∠ADC=60°,$AB=\frac{1}{2}AD$,PA⊥面ABCD,E为PD的中点.
(Ⅰ)求证:AB⊥PC
(Ⅱ)若PA=AB=$\frac{1}{2}AD=2$,求三棱锥P-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为189.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
非体育迷体育迷合计
301545
451055
合计7525100
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,真命题的个数为(  )
①若a,b,c∈R则“a>b”是“ac2>bc2”成立的充分不必要条件;
②若椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为20.
③若命题“¬p”与命题“p或q”都是真命题,则命题q一定是真命题;
④若命题p:?x∈R,x2+x+1<0,则¬p:?x∈R,x2+x+1≥0.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案