精英家教网 > 高中数学 > 题目详情
15.化简:$\sqrt{2-\sqrt{2+\sqrt{2+2cosα}}}$(3π<α<4π)=2cos$\frac{α}{8}$.

分析 直接利用二倍角的余弦函数化简所求表达式,注意角的范围.

解答 解:3π<α<4π,$\frac{α}{2}∈(\frac{3π}{2},2π)$,$\frac{π}{4}∈(\frac{3π}{4},π)$,
∴$\sqrt{2-\sqrt{2+\sqrt{2+2cosα}}}$
=$\sqrt{2-\sqrt{2+\sqrt{{4cos}^{2}\frac{α}{2}}}}$
=$\sqrt{2-\sqrt{2+2cos\frac{α}{2}}}$
=$\sqrt{2-\sqrt{4co{s}^{2}\frac{α}{4}}}$
=$\sqrt{2+2cos\frac{α}{4}}$
=$\sqrt{4co{s}^{2}\frac{α}{8}}$
=2cos$\frac{α}{8}$.
故答案为:2cos$\frac{α}{8}$.

点评 本题考查二倍角的余弦函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知△ABC的内角A、B、C对的边分别为a、b、c,sinA+$\sqrt{2}$sinB=2sinC,b=3,当内角C最大时,△ABC的面积等于(  )
A.$\frac{9+3\sqrt{3}}{4}$B.$\frac{6+3\sqrt{2}}{4}$C.$\frac{3\sqrt{2\sqrt{6}-\sqrt{2}}}{4}$D.$\frac{3\sqrt{6}-3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)是定义在R上的偶函数,且对任意x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有:①函数f(x)的周期为2;②函数在区间(1,2)上是减函数,在区间(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0,其中所有正确命题的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知e为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率,点(1,e)和$(e\;,\frac{{\sqrt{3}}}{2})$都在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l与椭圆相交于两点A(x1,y1)、B(x2,y2),设P(bx1,ay1)、Q(bx2,ay2),若以PQ为直径的圆C恒过坐标原点O,求证:△AOB的面积等于定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某地区今年物价指数增加20%,则用同样多的人民币只能购买去年商品的$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+cost}\\{y=-1+sint}\end{array}\right.$,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ
(1)把C1的参数方程化为极坐标方程
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数g(x)是定义域为R的奇函数,f(x)=g(x)+4,且f[lg(log310)]=5,则f[lg(lg3)]=(  )
A.-3B.-2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin($\frac{k}{10}x+\frac{π}{3}$)(k≠0),当自变量x在任意两个整数之间(包括整数本身)变化时,至少包含一个周期,则最小正整数k是(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,且an+1=2an+3(n∈N+
(1)设bn=an+3(n∈N+),求证{bn}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案