精英家教网 > 高中数学 > 题目详情
16.把十进制数132转换成二进制数是10000100.

分析 利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.

解答 解:132÷2=66…0
66÷2=33…0
33÷2=16…1
16÷2=8…0
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故93(10)=10000100(2)
故答案为:10000100(2)

点评 本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设D为△ABC中BC边上的中点,且O为AD边上靠近点A的三等分点,则(  )
A.$\overrightarrow{BO}=-\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$B.$\overrightarrow{BO}=\frac{1}{6}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$C.$\overrightarrow{BO}=\frac{5}{6}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}$D.$\overrightarrow{BO}=-\frac{1}{6}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子,则恰有一个空盒子的放法数为144.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sinx=$\frac{3}{5},且\frac{π}{2}$<x<π,则tanx=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|y=lg(x-1)},B={y|y=$\sqrt{{x}^{2}+2x+5}$},则A∩(∁UB)=(  )
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
组号分组喜爱人数喜爱人数
占本组的频率
第1组[15,25)a0.10
第2组[25,35)b0.20
第3组[35,45)60.40
第4组[45,55)120.60
第5组[55,65]200.80
(1)写出其中a,b,n及x和y的值;
(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在[35,45)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z=(5+2i)2那么Z的实部是21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“sin2α+cos2α=1恒成立”的否定是(  )
A.?α∈R,使得sin2α+cos2α=1B.?α∈R,使得sin2α+cos2α≠1
C.?α∈R,使得sin2α+cos2α=1D.?α∈R,使得sin2α+cos2α≠1

查看答案和解析>>

同步练习册答案